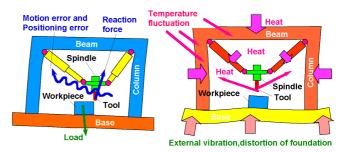
Study on Accuracy Improvement of Parallel Kinematic Machine - Compensation Methods for Thermal Expansion of Link and Machine Frame -

Takaaki OIWA*

*Department of Mechanical Engineering, Faculty of Engineering, Shizuoka University Johoku 3-5-1, Hamamatsu 432-8561, JAPAN Phone: +81-53-478-1034, Fax: +81-53-478-1031

E-mail: tmtooiw@ipc.shizuoka.ac.jp, http://oiwa.eng.shizuoka.ac.jp/

Abstract


This paper describes compensation methods for deformations of both the links of the parallel kinematic mechanism and the flame supporting the mechanism. These deformations are caused by the heat, the external forces and the internal forces. First, the longitudinal deformation of prismatic the joints is mechanically compensated by Super-Invar rod connected to the joints and the linear scale units. Second, nine displacement sensors with nine Super-Invar rods measure the variation of distances between the surface plate and three spherical joint supports. The direct kinematics of Hexapod mechanism calculates the displacement and the attitude variations of the mechanism during operation. Consequently, the coordinates of the end effector are compensated. Experimental results reduction of the influence of the temperature fluctuation and variation of measured values. Key words: parallel kinematic machine, error compensation, motion error, thermal expansion

1. Introduction

When the improvement of the machining accuracy and the measurement accuracy is needed, it is extremely important to obtain an accurate relative position between the tool and the workpiece of the machine tool or the coordinate measuring machine. In actual machine, however, internal and Fig. 1 Various causes of relative positioning error between tool

external disturbances shown in figure 1 cause considerable relative positioning errors. Thus, not only moving accuracy but also structural and thermal stability in the whole machine is required. In general, much improvement for the guide element accuracy and the structural stiffness has been performed to decrease the motion error and the deformation caused by the external and internal forces. Increased mass raised along with it, however, further affects the motion error and the elastic deformation because of its own weight. To compensate the thermal deformation mentioned above, many researchers have generally investigated some prediction methods with limited temperature sensors. However, the thermal deformation is hard to predict because such temperature sensors can not measure the temperatures of the whole elements of the machine.

This study deals with improvement of the mechanism accuracy of parallel kinematic machine (PKM) consisting of closed loop link mechanism. In the same manner as the orthogonal mechanism, the parallel kinematic

and workpiece for PKM

machine has actually the following factors that cause the positioning error;

- (1) joint runouts caused by the motion of the mechanism,
- (2) elastic deformations of the links and the joints, generated by transfer of the center of gravity,
- (3) elastic deformation of the machine frame supporting the mechanism, which is caused by internal and external forces,
- (4) thermal expansion of the links and frame, which is caused by the temperature fluctuation.

This paper describes a compensation system consisting of some measuring devices for whole factors mentioned above. This system takes advantage of truss structure in the PKM employing actuated prismatic joints with the linear scale units shown in figure 1.

2. Compensation for parallel kinematics

2.1 Joint errors

Recent studies[1]-[3] reported that the translational joint errors in a direction of actuated prismatic joint strongly affect the motion error of the mechanism. Effects of the joint motion errors except above direction, moreover, are minimized when the end effector is located on extensional lines of the prismatic joints. Therefore, variation of the prismatic joint expansion measured by the linear scale unit can be compensated by displacement sensors built in the spherical joint as shown in **figure 2**. Consequently, a length of i-th actuated link, l_i , can be expressed by

$$l_i = l_{0i} + g_{Li} - g_{Bi} - g_{Si}, (1)$$

where l_{oi} is initial length of the link, g_{Li} is measured value of the scale unit, g_{Bi} and g_{Si} are measured values of the displacement sensors installed in both spherical joints. The reference ball built in the joint must have proper sphericity to be a reference surface for the measurement. The reference balls can be also installed into a universal joint.

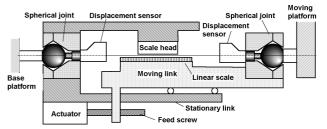


Fig. 2 Arrangement of two displacement sensors for measuring spherical joint motion error

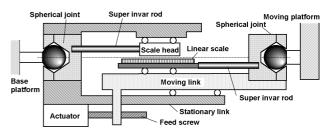
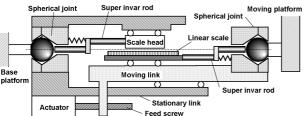



Fig. 3 Arrangement of two super invar rods for mechanical compensation of thermal deformation of link

2.2 Compensation of link length

The fundamentals of compensation for the thermal expansion and the elastic deformation of the links are shown in **figure 3**. In general, some materials with low thermal expansivity, e.g. Super-Invar; expansivity: 0.3-0.8 ppm/K, are used to decrease the thermal expansion of equipments. It is not the best way to use these materials for whole structure because the materials are often heavy, expensive and bad machinability. Thus, a scale head and a scale of the linear scale unit are connected to both spherical joints through Super-Invar rods as shown in figure. Consequently, the distance between the scale unit and the spherical joints is not influenced by any thermal expansion of the link. The scale head and the scale are guided by linear bearings so that these may be moved only in the prismatic joint direction. Furthermore, the distance is not also influenced by any external force i.e. compressive or tensile forces, because no load is applied to the rods and the scale unit.

Figure 4 shows an integrated compensation system for both the joint runout and the link expansion. Contacting a rod end with the spherical surface enables the scale unit to substitute for two displacement sensors.

Fig. 4 Compensation device using super invar rods connecting with reference balls and scale unit

Spherical joints Three reference points on base platform, b_1 , b_2 , b_3 u_2 u_3 u_4 u_5 u_4 u_5 u_4 u_5 u_6 Three reference points on surface plate, m_1 , m_2 , m_3 Surface plate x_M x_M

Fig. 5 Six reference points and two coordinate systems

3. Compensation for frame deformation

3.1 Fundamentals

As mentioned in introduction, whole machine parts inclusive of the frame, base and mechanism are deformed by various causes. The base and the foundation on which the machine is set are not exception. Therefore, in this paper, the surface plate is employed as the reference surface. If the position and the attitude of the base platform in a fixed coordinate located on the surface plate are measured in process, the thermal and elastic deformations of the frame can be compensated. These compensation can done independently of the structural deformations of the machine base and frame.

In general, three joints on the base platform of 3 DOF PKM are located at regular intervals of 120 degrees. Moreover, because two of six joints on the base platform of Hexapod are closely located, common PKMs have three supports for base platform joints.

Then, when three reference points are set on the surface plate as shown in **figure 5**, its position and attitude can be computed by these reference points. Moreover, when three reference points are set on the base platform, its position and attitude also can be represented by these points. Consequently, the base platform position and attitude observed in the coordinate system located on the surface plate, $_{M}$, are derived from six distances, u_1 - u_6 , and three distances, t_1 - t_3 as shown in figure 5. The above geometrical relationship forms an octahedron as shown in figure. Variations of those position and attitude caused by the

thermal expansion and the elastic deformation, therefore, can be calculated by using the direct kinematics of Hexapod, if installed nine displacement sensors measure nine distances shown in figure.

3.2 Procedures for Calculation of position and attitude of mechanism

First, position vectors of the reference points, ${}^{B}P_{bi}$ (i=1, 2, 3), observed in the coordinate system fixed on the base platform, $_{\rm B}$, are calculated from three distances between the reference points on the base platform, t_1 - t_3 . Here, the origin of the coordinate system, $_{\rm B}$, is located at the center of gravity of the points b_i . The XY plane of $_{\rm B}$, moreover, contains three points b_i . In the same way, a coordinate system attached on the surface plate, $_{\rm M}$, is represented by three points m_i . Position vector, ${}^{M}P_{bi}$, representing the reference points observed in the coordinate system $_{\rm M}$ is

$${}^{M}\boldsymbol{P}_{bi} = {}^{M}\boldsymbol{P}_{B} + {}^{M}\boldsymbol{R}_{B} {}^{B}\boldsymbol{P}_{bi}, \tag{2}$$

where ${}^{M}P_{B}$ represents the position vector of the base platform and the transformation matrix ${}^{M}R_{B}$ represents the attitude of the base platform. Furthermore, the distances between the reference points of the base platform and the surface plate, u_{1} - u_{6} , are

$$u_{1} = |{}^{M}\boldsymbol{P}_{b1} - {}^{M}\boldsymbol{P}_{m1}|, \quad u_{2} = |{}^{M}\boldsymbol{P}_{b1} - {}^{M}\boldsymbol{P}_{m3}|,$$

$$u_{3} = |{}^{M}\boldsymbol{P}_{b2} - {}^{M}\boldsymbol{P}_{m1}|, \quad u_{4} = |{}^{M}\boldsymbol{P}_{b2} - {}^{M}\boldsymbol{P}_{m2}|,$$

$$u_{5} = |{}^{M}\boldsymbol{P}_{b3} - {}^{M}\boldsymbol{P}_{m2}|, \quad u_{6} = |{}^{M}\boldsymbol{P}_{b3} - {}^{M}\boldsymbol{P}_{m3}|. \quad (3)$$

To obtain the position and attitude of the base platform from six distances u_1 - u_6 , it is necessary to numerically solve nonlinear simultaneous equation. This equation is well

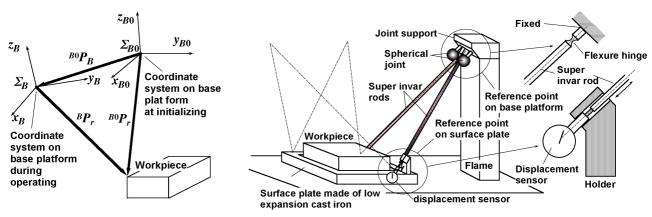


Fig.6 Two coordinate systems at initializing and during operating

Fig.7 Measurement device for frame deformation with 6 rods

known as the direct kinematics for Hexapod. Otherwise, infinitesimal variations of the position ${}^{M}\mathbf{P}_{B}$ and the attitude ${}^{M}\mathbf{R}_{B}$ of the base platform can be estimated by using the instantaneous kinematics because variations of the distances u_i are infinitesimal.

In the manner described above, each three reference points are set on both platform and surface plate. Even if number of the reference points on the base platform is six, the calculation can be done successfully.

3.3 Compensation for position of endeffector

In this chapter, the procedures will be given below to compensate the position and the attitude of the end effector.

- (1) An initial coordinate system of the base platform, ₈₀ is defined by using initial lengths of the distances of u_{0i} and t_{0i} , when the end effector returns to the machine zero point (see figure 6).
- (2) Variations of the distances, t_i and u_i , are measured by the displacement sensors during operation. The distances at the moment are expressed by

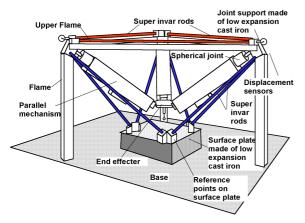
$$t_i = t_{0i} + t_i$$
, $(i = 1, \dots, 3)$ (4)
 $u_i = u_{0i} + u_i$. $(i = 1, \dots, 6)$ (5)

$$u_i = u_{0i} + u_i$$
 (i = 1,···,6) (5)

(3) A position and an attitude of the base platform, ${}^{M}\mathbf{P}_{B}$ and ${}^{M}\mathbf{R}_{B}$, observed in the instantaneous coordinate system computed either by the forward kinematics of Hexapod or by the instantaneous kinematics.

(4) In machine tools, the tool objective position ${}^{BO}P_r$, in the initial coordinate system transformed to that in the instantaneous coordinate system _B by

$${}^{B}\boldsymbol{P}_{r} = {}^{B}\boldsymbol{P}_{B0} + {}^{B}\boldsymbol{R}_{B0} {}^{B0}\boldsymbol{P}_{r} . \tag{6}$$


The tool objective attitude in the initial coordinate system moreover, transformed to that in the instantaneous coordinate system _B by the transformation matrix ${}^{B}R_{B0}$. Then, the tool tip of the parallel kinematic mechanism is driven to the objective position ${}^{B}\mathbf{P}_{r}$ in the coordinate system $_{R}$.

(5) In coordinate measuring machines, first, a coordinate of the probe tip ${}^{B}\mathbf{P}_{r}$ in the base platform coordinate system _R is calculated by the forward kinematics from indicated values of the linear scale units. Second, the coordinate ${}^{B}\boldsymbol{P}_{r}$ is transformed to a coordinate ${}^{B0}\boldsymbol{P}_{r}$ in the initial coordinate system ₈₀ by

$${}^{B0}\boldsymbol{P}_{r} = {}^{B0}\boldsymbol{P}_{B} + {}^{B0}\boldsymbol{R}_{B} {}^{B}\boldsymbol{P}_{r} \quad . \tag{7}$$

3.4 Measuring device for frame

Figure 7 shows an example of measuring devices using six Super-Invar rods for measuring the frame deformation. spherical joints are mounted on joint support made of the low thermal expansion cast iron. The rods are spanned between the joint supports and the surface plate. One end of the rod is connected at a joint support through a flexure hinge. Another end, moreover, is supported by a holder, and can move to

Fig.8 Measurement device for frame deformation in 3D coordinate measuring machine

longitudinal direction. A displacement sensor is mounted on the holder, and can measures relative displacement of the end surface of the rod. The length of the rod is constant because the rod is not loaded by any external load. Moreover, the thermal expansion of the rod is infinitesimal at any temperature fluctuation. Therefore, measured displacement means the variation of the distance between the joint support and the surface plate.

Figure 8 shows an example device for measuring the variation of the distance between each joint supports, t_i . Three Superinvar rods and three displacement sensors are used in the same way as shown in figure 7.

4. Experiments

4.1 Experiments in µCMM

Figure 9 shows an active link for a micro coordinate measuring machine and its test bed. The link employs a compensation device shown in figure 4. Variation of the link length is measured by Heidenhain linear scale unit, LIP-401R. A test bed was made of low thermal expansion cast iron. The stage is connected to the link through a spherical joint, and is moved in longitudinal direction by the link. The displacement of the stage is measured by a laser interferometer. If there is no elastic deformation of the joint and the link when the external force is loaded, no difference will be observed between the displacements measured by both the scale unit and the interferometer. In

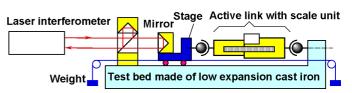


Fig.9 Experimental setup for active link subjected to external load

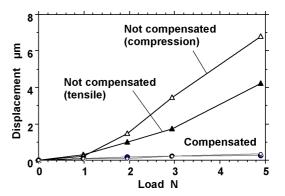


Fig.10 Differences of measured displacements between scale unit and laser interferometer

actual, however, the difference is observed between them as shown in figure 10 when the compensation hasn't been made yet. However the compensation considerably decreases the displacement differences caused by the external force. Moreover, the compensation decreases the difference even when the link is expanded by temperature fluctuations. This result means that the scale unit can measure not only the displacement of the prismatic joint but also the deformation of the joints and the thermal expansion.

4.2 Experiment in CMM

The compensation devices for the joint errors and the link expansion shown in figure 2 and 3 are installed in an experimental CMM[1][3] made by our laboratory (figure 11). Nine electrical comparators are set into the joints to measure the displacements of the reference balls. Super-Invar rods, moreover, connect each joints and the scale unit to eliminate the influence of the thermal expansion. Moreover, the frame compensation device described in chapter 3 is also adopted for this machine. Other nine electrical comparators are mounted to measure the displacements of the frame as

Fig.11 Experimental CMM with compensation device for frame deformation

shown in figure 8.

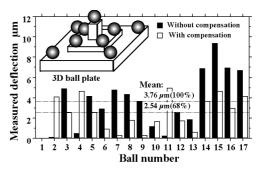

Figure 12 shows deflections of measured distances between 17 balls mounted on a 3D ball plate. The compensation system decreases the deflections of 32% caused by the deformations of the joints.

Figure 13 shows variations of measured Z coordinate values of a reference ball on the surface plate. Measured values change gradually because of the temperature rise during measurement. The compensation decreases the deflection of the coordinate values. The changes in X and Y directions were so small because of an axisymmetric structure of the frame.

5. Conclusions

Integrated compensation system consisting of some measurement devices has been proposed to improve moving accuracies of the PKM. The conclusions are drawn as follows.

- (1) The displacement sensors built in the joints and even the linear scale unit can measure the joint motion errors and the thermal expansion of the link.
- (2) Connecting the scale unit and the joints by Super-Invar rods compensates both the thermal expansion and the elastic deformation of the link.
- (3) Measurement of the distance changes between the surface plate and the joint supports can compensate the thermal and elastic deformation of the frame.

Fig.12 Measured deflection of distances between the balls of 3D ball plate

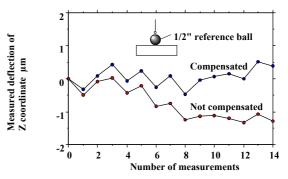


Fig.13 Variation of the measured coordinate during measurements

Acknowledgments

The author would like to thank Mr. Oobayashi and Mr. Yamashita of Shizuoka University for their help in carrying out the measurements. This work is financially supported by the Grant-in-aid for scientific research of the Ministry of Education, Culture, Sports, Science and Technology.

References

- [1] T. Oiwa and K. Yamaguchi: Coordinate Measuring Machine using Parallel Mechanism (3rd Report) -Abbe's Principle-, J. Jpn. Soc. Prec. Eng., Vol. 66, No. 9, (2000), pp. 1378-1382 (in Japanese).
- [2] T. Oiwa and M. Tamaki: Study on ABBE's Principle in Parallel Kinematics, Proc. 2nd Chemnits Parallel Kinematic Seminar, (2000), pp. 354-352.
- [3] T. Oiwa: Coordinate Measuring Machine using Parallel Mechanism, Proc. 16th IMEKO World Congress, Vol. 8, (2000), pp. 211-214.