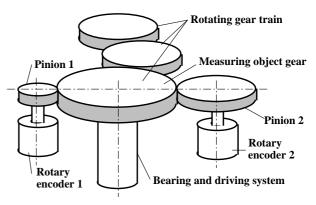
歯車偏心誤差のオンマシン計測に関する研究

On-machine Measurement for Gear Eccentricity

正 大岩 孝彰(静大工) 学 吉田 理(静大院)

Takaaki OIWA, Shizuoka University, Johoku3-5-1, Hamamatsu, Shizuoka 432-8561 Satoshi YOSHIDA, Graduate School, Shizuoka University


This paper describes a measuring method for the eccentricity and some lower-order transmission errors of the gear during rotation. Amplitude and phase of the eccentricity are estimated by the harmonic analysis on the transmission error between two pinion gears meshing together the object gear. This method measures not only the gear eccentricity generated during the manufacturing process but also deflections of the gear shaft and its bearings during operation. Transmission error of the meshing three gear system was measured by two encoders and a counter connecting to PC. The amplitude and the phase of the gear eccentricity were estimated by FFT independently of the systematic errors and misalignments of the pinion gears and the encoders. After adjusting the center of the object gear, the eccentricity decreased considerably from 262 μ m to 12 μ m.

Key Words: gear eccentricity, transmission error, in-process measurement

1.緒言

歯車は動力を滑らかに伝達し、回転角を正確に伝える必要があるため、歯車の加工後や組立て時には歯車が正しく加工され、組み付けられているか測定する必要がある。歯車列に回転誤差などがある場合、機械が精密であるほどこの影響は無視できないほど大きくなり、例えば印刷機では印刷物の色ズレなどが生じる.このような歯車の誤差には大きく分けて、歯形誤差やピッチ誤差のような短周期のものと、偏心のように歯車一回転にわたって観察される長周期のものに分けられる.特に後者の長周期の誤差成分の測定は、歯溝にピンなどの測定子を挿入して測定する歯溝の振れの測定(1)かマスタ歯車や基準円盤を用いるかみあい精度試験などによって行われてきた.

しかしこのような誤差の発生要因は,歯切り時の製作誤差や歯車取付時のアライメント誤差などの静的要因だけでなく,軸受の回転誤差や歯車列運転時の負荷変動などに起因する軸や軸受のたわみなどの動的な要因なども考えられる.そこで機器の運転中における歯車の偏心等の誤差を高精度に測定し,調整することができれば機器の性能向上に有効であると考えられる.また,従来のかみ合い試験方法などでは,高精度なマスタ歯車などが必要であったり,ロータリエンコーダなどの高精度な角度測定機を試験歯車と同軸に精密に取り付ける必要などがあった.そこで本報では,このような設置の困難さを解決し,ロータリエンコーダの器差やアライメント誤差などの影響を受けずに,歯車列の高速運転時においても試験歯車のみの偏心成分を含む

Fig. 1 Measurement setup for transmission error of the rotating gear train

低次の誤差成分を測定する方法について述べ,実験において歯車の偏心を調整した結果について報告する.

2.原理

2.1 概要

まず、測定装置の概略を図1に示す。運転中の歯車列中の任意の試験歯車に対して、ロータリエンコーダ1および2が同軸に取り付けられた小歯車1と小歯車2をかみ合わせる。試験歯車は機器に組み込まれた状態で回転しているため、小歯車1と小歯車2も試験歯車によって回転させられる。このように本手法の装置の設置は運転中の試験歯車にかみ合わせるのみで完了する。ここで、小歯車1の回転角速度に対する小歯車2の回転角速度は、試験歯車の歯数Zに関わらず、小歯車1の歯数 Z_1 と小歯車2の歯数 Z_2 の比となる。これらの三つの歯車は設置時に偏心を持っている

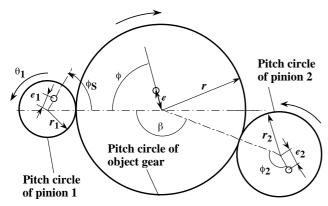


Fig. 2 Pitch circles of meshing object gear and two pinions at θ_1 =0 (white circles mean the center of rotation)

が,エンコーダ1が正確に回転したときの,エンコーダ2のパルスの発生ムラ,つまり小歯車1の回転に対する小歯車2の回転伝達誤差を考えることにする.

2.2 3段歯車列の回転伝達誤差

図2は偏心を持っている三つの歯車がかみ合っている様子を示している.このような偏心歯車の挙動については幾つかの研究がなされている $^{(2)}$.ここでは幾何学的に近似した式 $^{(3)}$ を用いる.図のように配置された偏心歯車列において,ピッチ円半径をr,偏心量をe,偏心位相を ϕ ,測定開始位相を ϕ sとすると,小歯車1の回転角 θ 1に対する小歯車2の回転伝達誤差 $^{(4)}$ 0は以下の式で近似できる.

$$\theta = \frac{e}{r_2} \sin \frac{r_1}{r} (\theta_1 + \phi_S) + \phi + \beta - \sin \frac{r_1}{r} (\theta_1 + \phi_S) + \phi$$
$$-\frac{e_2}{r_2} \sin \frac{r_1}{r_2} (\theta_1 + \phi_S) + \phi_2 + \frac{e_1}{r_2} \sin (\theta_1 + \phi_S) + C \qquad (1)$$

ここで,添字1および2は小歯車 1 および 2 を,添字がないものは試験歯車を表す.試験歯車が一回転するあいだ伝達誤差の測定を行うとすると,その間に小歯車 1 は r/r_1 回転する.つまり θ_1 は0から2 r/r_1 まで変化するため,(1)式の右辺第 1 項は試験歯車の偏心 e に起因する回転伝達誤差の 1 山成分を,第 2 項は小歯車 2 の偏心 e_2 による (r/r_2) 山成分,そして第 3 項は小歯車 1 の偏心 e_1 による (r/r_1) 山成分をそれぞれ示している.また,試験歯車と小歯車 1 に対する小歯車 2 の設置角度 β は右辺第 1 項すなわち 1 山成分の大きさに影響し, β = のとき 1 山成分は最大となるが, β = ののとき 0 となり試験歯車の偏心成分が検出できなくなる.したがって, β = となるように三つの歯車は一直線上に配置すると都合がよい.このとき(1)式は,

$$\theta = \frac{2e}{r_2} \sin \frac{r_1}{r} (\theta_1 + \phi_S) + \phi + \pi + \frac{e_2}{r_2} \sin \frac{r_1}{r_2} (\theta_1 + \phi_S) + \phi_2 + \pi + \frac{e_1}{r_2} \sin (\theta_1 + \phi_S) + C \quad (2)$$

となる.測定時に観察される回転伝達誤差の 1 山成分の振幅 $E=2e/r_2$ と位相 $\Phi=(r_1/r)\phi_S+\phi+$ をFFT解析により求めることができれば、試験歯車の偏心量の大きさ e と位相

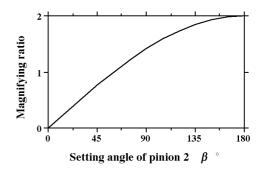


Fig. 3 Effect of setting angle of pinion2 on magnifying ration for measurement of gear eccentricity

Φ は以下の式により計算することができる.

$$e = \frac{r_2 E}{2} \tag{3}$$

$$\phi = -\pi - \frac{\eta}{r} \phi_S \tag{4}$$

また,小歯車 1 と小歯車 2 の偏心の影響は回転伝達誤差の (r/r_1) 山成分と (r/r_2) 山成分に現れるが,これを整数山にする必要がある.さらに,小歯車 1 と 2 の成分を分離して検出するためには,各歯車の歯数は

$$Z_1:Z:Z_2=1:2a:2k$$
 (5)

でなければならない.ただし,nとkは2以上の整数で,n>kの関係が必要である.

2.3 測定精度の検討

まず,小歯車 2 の設置角度 が偏心の大きさに及ぼす影響を調査した. を0から180° まで変化させた場合の 1 山成分の振幅の変化を図3に示す.縦軸の値に e/r_2 を乗じたものが測定される伝達誤差の 1 山成分の振幅となる.この図から設置角度は前述のように180°の場合に最大となり,多少設置角度に誤差があっても,振幅の大きさの変化は少ないことがわかる.

次に,歯車列の回転伝達誤差を測定する小歯車 2 に取り付けるロータリエンコーダ 2 の分解能について検討する.前節のように,回転伝達誤差の 1 山成分の振幅は $E=2e/r_2$ であるから,例えばピッチ円半径 $r_2=30$ mm程度の小歯車 2 を用いて試験歯車の1 μ m程度の偏心を検出したい場合, $2 \times 0.001/30=66.7$ μ rad (13.8) の分解能のエンコーダ(約94,000パルス/回転)が必要となる.また, r_2 が大きい場合もさらに高分解能なエンコーダが必要となる.

3. 実 験 装 置

実験装置の概略を図4に,写真を図5に示す.図6は信号処理回路のブロック線図である.図3のように小歯車1と小歯車2および測定歯車を一直線上に配置した.歯数はそれぞれ Z_1 =15, Z_2 =30およびZ=120である.試験歯車は転がり案内方式のターンテーブル $^{(4)}$ (半径方向・軸方向の振れ:0.2 μ m以下)の上に偏心調整用のマイクロメータヘッド(分解能10 μ m)付r ステージを介して取り付けた.

Fig. 4 Experimental setup for measuring transmission error of three gear system

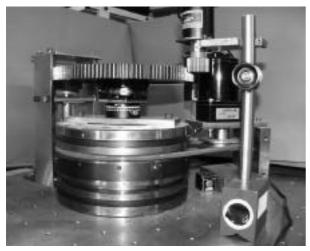


Fig. 5 General view of the experimental setup

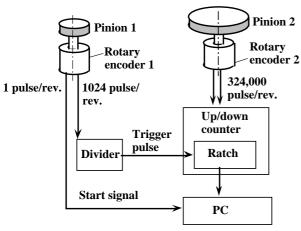


Fig. 6 Block diagram of counter data acquisition system

各歯車の緒言を表1に示す.

小歯車2と同軸に取り付けたエンコーダ2は,一回転81,000パルスのもの(キャノンR-1L,累積誤差20 以下)を4 逓倍し324,000パルスとして用いた.このエンコーダ2から出力される90°位相差のパルスはアップダウンカウンタ⁽⁴⁾により計数される.測定分解能は $2 \operatorname{rad}/324,000 = 1.939 \times 10^{-5} \operatorname{rad}=19.39 \ \mu \operatorname{rad} (=4.0) となる.$

Table 1 Specifications of object gear and two pinions

	Pinion 1	Object gear	Pinion 2
Module		2	
Pressure angle		20°	
Number of	15	120	30
tooth	15	120mm	30mm
Material	MC901	SC45C	MC901

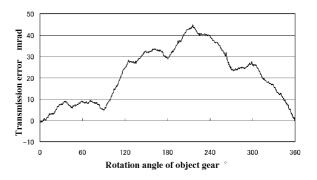


Fig. 7 Measured transmission error before adjusting the eccentricity of object gear

サンプリングのタイミングパルス発生用の小歯車1に取り付けたロータリエンコーダは,FFT解析をおこなうため,一回転で2nパルスのものを使用する必要がある.本報では一回転1024パルスのもの(オムロン,E6C-C)使用し,分周器で1/4に分周したため,一回転当たり256パルスとなる.

アップダウンカウンタ内には、計数した値をこのタイミングで保持するラッチ回路が内蔵されており、パーソナルコンピュータはその値を読み込む、以上の回路により、小歯車1が一定角度回転するごとの小歯車2の回転角度を、歯車列を停止させることなく高速で測定できる。回転伝達誤差がない場合、一回のサンプリングで小歯車2は180°/256=0.703125°回転することになる。さらにエンコーダ1から1回転に1パルスが出力されるのを利用して、常に同一の試験歯車の回転角度から測定を開始することとし、試験歯車が1回転するあいだの256×8=2048点のデータを取得した。

4. 実験 結果

4.1 偏心修正前の伝達誤差

前章で説明した装置により、試験歯車が1回転する間測定した回転伝達誤差を図7に示す、縦軸は回転伝達誤差を小歯車2の回転角度にて表してある、横軸は試験歯車の回転角度で表した、図から試験歯車が1回転する間に、回転伝達誤差に1山成分が大きく現れていることがわかる、この回転伝達誤差をFFTにより周波数解析を行い、成分ごとに振幅を表したものを図8に示す、縦軸は各山成分の振

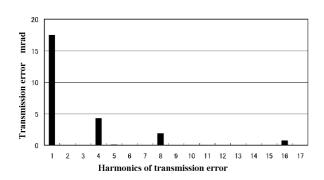


Fig. 8 Measured transmission error before adjusting the eccentricity

幅を、横軸は山数を表している.この図から、この回転伝達誤差は一山成分が顕著であり、他に4山、8山および16山成分が観察されていることがわかる.これらの成分は小歯車1および2の偏心等の誤差やエンコーダ1および2の器差などに起因するものであると考えられる.他の周期成分ではとくに大きな振幅を持つものは見られなかった.

この 1 山成分の振幅と位相から(2)および(3)式を用いて 試験歯車の偏心eと位相 ϕ を求めた結果 , e=262 μ m , ϕ =73.2 $^{\circ}$ が得られた.これから , 図3にあるように r ステージ を用いて試験歯車の偏心誤差の調整を行った.

4.2 偏心修正後の伝達誤差

調整後,再度測定した回転伝達誤差を図9に,周波数解析結果を図10に示す.調整により,試験歯車の偏心に起因する1山成分が著しく減少していること,その他の4山および8山成分はまったく変化がないことがわかる.これは前述のように,4山および8山などの成分は主に小歯車やエンコーダの誤差に起因するものと推察されるから,試験歯車の偏心調整により減ずることはない.このときの試験歯車の偏心はe=12 μ mとなり,調整前の4.6%まで減少させることができた.

5.考察

本実験の場合,小歯車1に関する誤差に起因する回転伝達誤差は8山成分以上の高次の部分に現れ,さらに小歯車2に関する誤差に起因する回転伝達誤差は4次以上の高次に現れる.したがって,1山,2山および3山成分は試験歯車とそれを支持する軸受に関する誤差に起因することになる.例えば2山成分が観察された場合,このようなピッチ誤差があるか,回転軸に対する試験歯車軸心の傾きによるものであると推察できる.このように,本手法を用いれば,試験歯車の偏心だけではなく,機器運転中の比較的低次の試験歯車の誤差についても測定が可能である.この場合はZに対して Z_1 および Z_2 をより小さめに設定すれば,より高次の成分まで測定ができる.

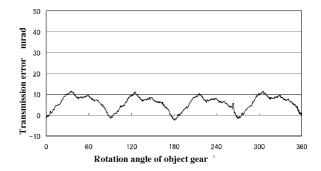


Fig. 9 Measured transmission error after adjusting the eccentricity

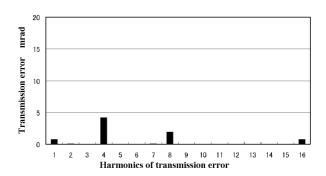


Fig. 10 Measured transmission error after adjusting the eccentricity

機器の運転中における歯車の偏心誤差を測定するため, 試験歯車に対して二つの小歯車をかみ合わせる測定方法を 提案し,実験を行った結果,以下の結論を得た.

- (1) 一方の小歯車に対する他方の小歯車の回転角度を測定して得られた回転伝達誤差を周波数解析することにより,試験歯車の偏心の振幅と位相を推定した。
- (2) 測定の結果,試験歯車の偏心成分と小歯車の持つ誤差成分を分離させて検出が可能であった.
- (3) 得られた試験歯車の偏心成分の振幅値と位相を用いて 試験歯車の偏心調整を行った結果,262 μ mあった試験 歯車の偏心を12 μ mに低減させることができた.

参考文献

- (1) JIS B1751.
- (2) 例えば石田喜助:偏心歯車,日本機械学会論文集,15,50(1949)IV-80.
- (3) 楠田敏明,池田雅夫:偏心歯車列における回転誤差,日本機械 学会第76期全国大会講演論文集(V),(1998)79.
- (4) 大岩孝彰, 小林和夫, 豊山 晃:精密鼓形ウォームギヤの製作ウォーム研削装置の試作 ,精密工学会誌, 54,2(1988)408

6. 結 言