A 著書・翻訳     

(1)  Optical Fiber Components: Design and Applications, Book chapters, H. Li, Y. Sheng, and J. E. Rothenberg, Research Signpost, 2006 ISBN:81-308-0097-7.  Page. 1-25, Page. 99-120.  

  

B 学術論文 (# Corresponding author)

1.       H. Lu, Y. Hao, C. Guo, X. Huang,  H. Hao, D. Guo, #H. Zhao, W. Tang, P. Wang and #H. Li, “Nano-displacement measurement system using a modified orbital angular momentum interferometer,” IEEE J. Quantum Electron., Vol. 58, No. 2, 7500105 (2022). 

2.       C. Zhu, L. Wang. H. Zhao, Z. Bing, Y. Zhao, and H. Li, “Dual-triangular filter based on an optimized phase-modulated helical fibre grating,” Optics Commun., vol. 503, 127452 (2022).

3.       H. Zhao, Z. Zhang, M. Zhang, Y. Hao, P. Wang, and H. Li, “Broadband flat-top second-order OAM mode converter based on a phase-modulated helical long-period fiber grating,” Opt. Express, Vol. 29, No. 18, pp. 29518-29526 (2021).

4.       C. Zhu, Y. Zhao, M. Chen, R. Tong, S.  Hu, and H. Li, Simultaneous measurement of directional torsion and temperature by using a DC-sampled helical long-period fiber grating,” Opt. Laser Techn., Vol. 142, 107171 (2021).

5.       C. Zhu, L. Wang, Z. Bing, R. Tong, M. Chen, S. Hu, Y. Zhao, and H. Li, “Ultra-broadband OAM mode generator based on a phase-modulated helical grating working at a high radial-order of cladding mode,” IEEE J. Quantum Electron., Vol. 57, No. 4, 6800307 (2021).

6.       R. Mizushima, T. Detani, C.  Zhu, P. Wang, H. Zhao, and #H. Li, “The superimposed multi-channel helical long-period fiber grating and its application to multi-channel OAM mode generator,” IEEE J. Lightwave Technol., Vol. 39, No. 10, pp. 3269-3275(2021).

7.       H. Zhao, and #H. Li, “Advances on mode-coupling theories, fabrication techniques, and applications of the helical long-period fiber gratings: a review,” Photonics, Vol. 8, No. 4, 106 (2021).

8.       T. Detani, H. Zhao, P. Wang, and T. Suzuki, #H. Li, “Simultaneous generation of the second- and third-order OAM modes by using a high-order helical long-period fiber grating,” Opt. Lett., Vol. 46, No. 5, pp. 949 -952 (2021).

9.       P. Wang, H. Zhao, T. Detani, and #H. Li, “Simultaneous generation of the first- and second-order OAM using the cascaded HLPGs,” IEEE Photon. Technol. Lett., Vol. 32, No. 12, pp. 685-688 (2020).

10.    P. Wang, H. Zhao, Taishu Detani, Yuhta Tsuyuki, and #H. Li, “Demonstration of the mode-selection rules obeyed in a single-helix helical long-period fiber grating,” Opt. Lett., Vol. 45, No. 7, pp. 1846-1849 (2020).

11.    P. Wang, H. Zhao, T. Yamakawa, and #H. Li, “Polarization-independent flat-top band-rejection filter based on the phase-modulated HLPG,” IEEE Photon. Technol. Lett., Vol. 32, No. 3, pp. 170-173 (2020).

12.    H. Zhao, Miaomaio Zhang, and H. Li, “Modal-dispersion effects on the spectra of the helical long-period fibre grating-based components,” Optics Commun., Vol. 457, pp. 124708 (2020).

13.    H. Zhao, P. Wang, T. Yamakawa, and #H. Li,All-fiber second-order orbital angular momentum generator based on a single-helix helical fiber grating,” Opt. Lett., Vol. 44, No. 21, pp. 5370-5373 (2019).

14.    C.  Zhu, P. Wang, H. Zhao, S. Ishikami, R. Mizushima, and #H. Li,DC-sampled helical long-period fiber grating and its application to the multichannel OAM generator,” IEEE Photon. Technol. Lett., Vol. 31, No.17, pp. 1445-1448 (2019).  

15.    H. Zhao, Miaomaio Zhang, C.  Zhu, and H. Li, “Multichannel Fiber Bragg Grating Based on DC-sampling Method,” Optics Commun., Vol. 445, pp. 142-146 (2019).

16.    C.  Zhu, S. Ishikami, H. Zhao, and #H. Li,Multichannel long-period fiber grating realized by using the helical sampling approach,” IEEE/OSA J. Lightwave Technol., Vol. 37, No. 9, pp. 2008-2013 (2019).

17.    C.  Zhu, S. Ishikami, P. Wang, H. Zhao, and #H. Li, “Optimal design and fabrication of multichannel helical long-period fiber gratings based on phase-only sampling method,” Opt. Express, Vol. 27, No. 3, pp. 2281-2291 (2019).

18.    C.  Zhu, T. Yamakawa, H. Zhao, and #H. Li, “All-fiber circular polarization filter realized by using helical long-period fiber gratings,” IEEE Photon. Technol. Lett., Vol. 30, No. 22, pp. 1905-1908 (2018).

19.    C.  Zhu, H. Zhao, and H. Li, “Mode-couplings in two cascaded helical long-period fibre gratings and their application to polarization-insensitive band-rejection filter,” Optics Commun., Vol. 423, pp. 81-85 (2018).

20.    H. Zhao, C.  Zhu, and #H. Li, “Design of an edge filter based on a phase-only modulated long-period fiber grating,” IEEE Photonics Journal, Vol. 10, No. 3, p. 7102409 (2018).

21.    H. Zhao and #H. Li, “Enhancement of high-order azimuthal mode couplings in a single-helix helical long-period fiber grating by using the phase-sampling method,” IEEE Photon. Technol. Lett., Vol. 30, No. 7, pp.  630-633 (2018).

22.    R. Subramanian, C. Zhu, H. Zhao, and #H. Li, “Torsion, strain, and temperature sensor based on helical long-period fiber gratings,” IEEE Photon. Technol. Lett., Vol. 30, No. 4, pp.  327-330 (2018).  

23.    H. Zhao, C. Zhu, R. Subramanian, and #H. Li, “Comprehensive analysis for the consecutively-cascaded single-helix long-period fiber gratings with opposite helicities,” IEEE J. Quantum Electron., Vol. 54, No. 1, p. 6800606 (2018).

24.    H. Zhao, P. Wang, C. Zhu, R. Subramanian, and #H. Li, “Analysis for the phase-diffusion effect in a phase-shifted helical long-period fiber grating and its pre-compensation,” Opt. Express, Vol. 25, No. 16, pp. 19085-19093 (2017).

25.    C. Zhu, H. Zhao, P. Wang, R. Subramanian, and #H. Li, “Enhanced flat-top band-rejection filter based on reflective helical long-period fiber gratings,” IEEE Photon. Technol. Lett., Vol. 29, No. 12, pp. 964 -966 (2017).

26.    P. Wang, R. Subramanian, C. Zhu, H. Zhao, and #H. Li, “Phase-shifted helical long-period fiber grating and its characterization by using the microscopic imaging method,” Opt. Express, Vol. 25, No. 7, pp. 7402-7407 (2017).

27.    G. Inoue, P. Wang, and #H. Li, “Flat-top band-rejection filter based on two successively-cascaded helical fiber gratings,” Opt. Express, Vol. 24, No. 5, pp. 5442-5447(2016).

28.    Peng Wang and #H. Li, “Helical long-period grating formed in a thinned fiber and its application to refractometric sensor,” Applied Optics, Vol. 55, No. 6, pp. 1430-1434 (2016).

29.    #H. Li and X. Chen,Energy-efficient optical pulse multiplication and shaping based on a triply sampled filter utilizing a fiber Bragg grating,” IEEE/OSA J. Lightwave Technol., Vol. 33, No. 10, pp. 2167-2176 (2015).

30.    P. Wang, L. X, and #H. Li, “Fabrication of phase-shifted long-period fiber grating and its application to strain measurement,” IEEE Photon. Technol. Lett., Vol. 27, No. 5, pp.  557-560 (2015).

31.    L. Xian, P. Wang, and #H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express, Vol. 22, No.17, pp. 20260-20267 (2014).

32.    #H. Li and X. Chen, “High channel-count ultra-narrow comb-filter based on a triply sampled fiber Bragg grating,” IEEE Photon. Technol. Lett., Vol. 26, No. 11, pp. 1112-1115 (2014).

33.    K. Ogusu and #H. Li, “Pulse response of nonlinear multimode interference couplers,” IEEE J. Quantum Electron., Vol. 50, No. 4, pp. 295-303 (2014).

34.    K. Ogusu and #H. Li, “Normal-mode analysis of switching dynamics in nonlinear directional couples,” IEEE/OSA J. Lightwave Technol., Vol. 31, No. 15, pp. 2639-2646 (2013).

35.    K. Hishiki and #H. Li, “Phase-shift formed in a long period fiber grating and its application to the measurements of temperature and refractive-index,” Opt. Express Vol. 21, No.10, pp. 11901-11912 (2013).

36.    L. Xian and #H. Li, “Calibration of a phase-shift formed in a linearly chirped fiber Bragg grating and its thermal effect,” IEEE/OSA J. Lightwave Technol., Vol. 31, No. 4, pp. 1185-1190 (2013).

37.    L. Xian, P. Wang, K. Ogusu, and #H. Li, “Cladding mode coupling in a wide-band fiber Bragg grating and its application to a power-interrogated temperature sensor,” IEEE Photon. Technol. Lett., Vol. 25, No. 3, pp. 231-233 (2013).

38.    X. Chen, L. Xian, K. Ogusu, and #H. Li, “Single-longitudinal-mode Brillouin fiber laser,” Applied Physics B-Lasers and Optics, Vol. 107, No. 3, pp. 791-794 (2012).

39.    X. Chen, K. Ogusu, and #H. Li, “Phase-Shift induced in a high-channel-count fiber Bragg grating and its application to multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett., Vol. 23, No. 8, pp. 498- 500 (2011).

40.    X. Chen, J. Hayashi, and #H. Li, “Ultrahigh-channel-count fiber Bragg grating based on the triple-sampling method,” Optics Commun., Vol. 284, pp. 1842-1846 (2011).

41.    X. Chen, T. Kameyama, Ming Li, and #H. Li, “Multiple dual-wavelengths fiber ring laser utilizing a phase-only sampled fiber Bragg grating with multiple phase-shifts inserted,” Applied Physics B-Lasers and Optics, Vol. 101, No. 1, pp. 115-118 (2010).

42.    X. Chen, Y. Painchaud, K. Ogusu, and #H. Li, “Phase shifts induced by the piezoelectric transducers attached to a linearly chirped fiber Bragg grating,” IEEE/OSA J. Lightwave Technol., Vol. 28, No. 14, pp. 2017-2022 (2010).

43.    X. Chen, J. Hayashi, and #H. Li, “Simultaneous dispersion and dispersion-slope compensator based on a doubly-sampled ultrahigh-channel-count fiber Bragg grating,” Applied Optics, Vol. 49, No. 5, pp. 823-828 (2010).

44.    X. Chen and #H. Li, “Simultaneous optical pulse multiplication and shaping based on an amplitude-assisted phase-only filter utilizing a fiber Bragg grating,” IEEE/OSA J. Lightwave Technol. Vol. 27, No. 23, pp. 5246-5252 (2009).

45.    M. Li, T. Fujii, and #H. Li, “Multiplication of a multi-channel notch filter based on a phase shifted phase-only sampled fiber Bragg grating,” IEEE Photon. Technol. Lett.. Vol. 21, No. 13, pp. 926-928 (2009).

46.    M. Li, X. Chen, T. Fujii, Y. Kudo, #H. Li, and Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett. Vol. 34, No. 11, pp. 1717-1719 (2009).

47.    M. Li, X. Chen, J. Hayashi, and #H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express Vol. 17, No.10, pp. 8382-8394 (2009).

48.    #H. Li, M. Li, and J. Hayashi, “Ultrahigh channel-count phase-only sampled fiber Bragg grating covering the S-, C- and L-band,” Opt. Lett. Vol. 34, No. 7, pp. 938-940 (2009).

49.    M. Li, T.  Fujii, #H. Li, and Y. Painchaud, “Proposal and realization for a broadband all-fiber non-uniformly spaced multi-channel optical filter, Optics Commun., Vol. 282, pp. 879-882 (2009).

50.    M. Li, J. Hayashi, and #H. Li, “Advanced design of complex fiber Bragg grating for multi-channel triangular filter, J. Opt. Soc. Am. B, Vol. 26, No. 2, pp. 228-234 (2009).

51.    M. Li and #H. Li, “Influences of writing-beam size on the performances of dispersion-free multi-channel fiber Bragg grating,” Optical Fiber Technology, Vol. 15, No. 1, pp. 33-38 (2009).

52.    M. Li, #H. Li, and Y.  Painchaud, “Multi-channel notch filter based on a phase-shifted phase-only-sampled fiber Bragg grating,” Optics Express Vol. 16, No. 23, pp. 19388-19394 (2008).

53.    M. Li, T. Takahagi, K. Ogusu, #H. Li, and Y. Painchaud, “A comprehensive study of the chromatic dispersion measurement of the multi-channel fiber Bragg grating based on an asymmetrical Sagnac loop interferometer,” Optics Commun., Vol. 281, pp. 5165-5172 (2008).

54.    M. Li and #H. Li, “Reflection equalization of the simultaneous dispersion and dispersion-slope compensator based on a phase-only sampled fiber Bragg grating,” Optics Express Vol. 16, No. 13, pp. 9821-9828 (2008).

55.    M. Li and #H. Li, “Chromatic dispersion measurement for multi-channel FBG based on a novel asymmetrical Sagnac loop interferometer,” IEEE Photon. Technol. Lett., Vol. 19, No. 20, pp.1601-1603 (2007).

56.    #H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high channel-count fiber Bragg gratings,” IEEE J. Lightwave Technol., Vol. 25, No. 9, pp. 2739-2749 (2007).

57.    M. Li, M. Wang, H. Rong, and H. Li, “A novel analytical approach for multi-Layer diaphragm-based optical micro-electromechanical-system pressure sensors,” Chinese Phys. Lett.  Vol. 23, No. 5, pp. 1211-1214 (2006).

58.    J. E. Rothenberg, #H. Li, Y. Sheng, J. Popelek, and J. Zweiback,, “Phase-only sampled 45 channel fiber Bragg grating written with a diffraction-compensated phase mask,” Opt. Lett. Vol. 31, No. 9, pp. 1199-1201 (2006).

59.    #H. Li, M. Li, K. Ogusu, Y. Sheng, and J. E. Rothenberg, “Optimization of a continuous phase-only sampling for high channel-count fiber Bragg gratings,” Optics Express Vol. 14, No. 8, pp. 3152 – 3160 (2006).

60.    M. Li, M. Wang, and H. Li, “Optical MEMS pressure sensor based on Fabry-Perot interferometry,” Optics Express Vol. 14, No. 4, pp. 1497-1504 (2006).

61.    “Photo-oxidation of As2Se3, Ag-As2Se3, Cu-As2Se3 chalcogenide films,” K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, J. Non-cryst. Solides Vol. 351, pp. 3132-3138 (2005).

62.    #H. Li, Y. Nakamura, K. Ogusu, Y. Sheng, and J. E. Rothenberg, “Influence of cladding-mode coupling losses on the spectrum of a linearly chirped multi-channel fiber Bragg grating,” Optics Express Vol. 13, No. 4, pp. 1281-1290 (2005).

63.    K. Ogusu, S.Maeda, M. Kitao, H. Li, and M. Minakata, “Optical and structural properties of Ag(Cu)-As2Se3 chalcogenide films prepared by a photodoping,J. Non-cryst. Solides Vol.347, pp.159-165 (2004).

64.    #H. Li, T. Kumagai, K. Ogusu, and Y. Sheng, “Advanced design of multi-channel fiber Bragg grating based on a layer-peeling method,” J. Opt. Soc. Am. B. Vol. 21, No. 11, pp. 1929-1938 (2004).

65.    K. Ogusu, H. Li, and M. Kitao, “Brillouin-gain coefficients of chalcogenide glasses” J. Opt. Soc. Am. B. Vol. 21, No. 7, pp. 1302-1304 (2004).

66.    Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase-shifts in phase mask for fiber Bragg grating,” IEEE Photon. Technol. Lett. Vol. 16, No. 5, pp. 1316-1318 (2004).

67.    #H. Li and Y. Sheng, “Direct design of multichannel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett., Vol. 15, No. 9, pp. 1252-1254 (2003).

68.    #H. Li, Y. Sheng, Y. Li, and J.  E.  Rothenberg, “Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation,” IEEE J. Lightwave Technol., Vol. 21, No. 9, pp. 2074-2083 (2003).

69.    Y. W. Song, S. M. R. Motaghian Nezam, D. Starodubov, J. E. Rothenberg, Z. Pan, H. Li, R. Wilcox, J. Popelek, R. Caldwell, V. Grubsky, and A. E. Willner, “Tunable interchannel broad-band dispersion-slope compensation for 10-Gb/s WDM systems using a nonchannelized third-order chirped FBG,” IEEE Photon. Technol. Lett., Vol. 15, No. 1, pp. 144-146 (2003).

70.    Z. Pan, Y. W. Song, C. Yu, Y. Wang, Q. Yu, J. Popelek, H. Li, Y. Li, and A. E. Willner, “Tunable chromatic dispersion compensation in 40-Gb/s systems using nonlinearly chirped fiber Bragg gratings,” IEEE J. Lightwave Technol., Vol. 20, No. 12, pp. 2239-2245 (2002).

71.    Y. W. Song, Z. Pan, S. M. R. Motaghian Nezam, C. Yu, Y. Wang, D. Starodubov, V. Grubsky, J. E. Rothenberg, J. Popelek, H. Li, Y. Li, R. Caldwell, R. Wilcox, and A. E. Willner, “Tunable dispersion slope compensation for 40-Gb/s WDM systems using broadband nonchannelized third-order chirped fiber Bragg gratings,” IEEE J. Lightwave Technol., Vol. 20, No. 12, pp. 2259-2266 (2002).

72.    J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett., Vol. 14, No. 9, pp. 1309-1311 (2002).

73.    H. Li and K. Ogusu, “Transient stimulated Brillouin scattering in a fiber ring resonator and its effect on optical Kerr bistability,” J. Opt. Soc. Am. B, Vol. 18, No. 1, pp. 93-100 (2001).

74.    H. Li and K. Ogusu, “Instability of stimulated Brillouin scattering in a fiber ring resonator,” Opt. Rev., Vol. 7, No. 4, pp. 303-308 (2000).

75.    H. Li and K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys. Part I, Vol. 38, No. 11, pp. 6309-6315 (1999).

76.    H. Li and K. Ogusu, “Analysis of optical instability in a double-coupler nonlinerar fiber ring resonator,” Optics Commun., Vol. 157, No.1-6, pp. 27-32 (1998).

77.    H. Li and K. Ogusu,“Optical nonlinearities of Bis(4-dimethylaminodithiobenzil)-nickel solution in the nano-second regime,” Jpn. J. Appl. Phys. Part I, Vol. 37, No.10, pp. 5572-5577 (1998).

78.    #H. Li, M. Cao, F. Luo, and K. Ogusu, “Optical inverse perfect shuffle interconnection and its application to polynomial evaluation,” Opt. Rev., Vol. 5, No. 3, pp. 138-142 (1998).

79.    K. Ogusu, H. Li, and T. Kamizono, “Analysis of transient optical bistability and stability in a nonlinear fiber Fabry-Perot resonator based on an iterative method,” Opt. Rev., Vol. 5, No. 3, pp. 185-190 (1998).

80.    L. Luo, M. Cao, H. Li, A. Wan, J. Xu, and Z. Li, “Non-equal distance phase computer-generated grating with 16x16 spot arrays applied to light window distribution in optical switching package,” Chinese Journal of Lasers, Vol. 25, No. 1, pp. 72-76 (1998).

81.    R. Wu, Z. Chen, W. Gao, M. Cao, A. Wan, Z. Liu, and H. Li, “8x8 multiple quantum well spatial light modulators for optical interconnection,” Chinese Journal of Lasers, Vol. 25, No. 7, pp. 603-608 (1998).

82.    M. Cao, F. Luo, Y. Li, L. Wang, J. Xu, A. Wan, and H. Li, “A novel free-space Comega network and its optical implementation,” Opt. Rev., Vol. 4, No.3, pp. 349-353 (1997).

83.    L. Luo, M. Cao, H. Li, A. Wan, J. Xu, and Z. Li, “Simplify design and analysis of 64×64 computer generated holographic phase grating with even spot arrays in optical interconnection module,” Acta Optica Sinica, Vol. 17, No. 10, pp 1335-1340 (1997). (In Chinese).

84.    #H. Li, M. Cao, J. Xu, F. Luo, and A. Wan, “Research of optoelectronic hybrid mesh interconnection network,” Acta Photonica Sinica, Vol. 26, No. 4, pp. 316-320 (1997). (In Chinese).

85.    Z. Liu, M. Cao, H. Li, A. Wang, and Z. Li, “Transformations between optical crossover networks and perfect shuffle networks and their implementation,” Optoelectronics Laser, Vol. 8, No.5, pp. 331-336 (1997). (In Chinese).

86.    Z. Liu, M. Cao, H. Li, F. Luo, and Z. Li, “An ATM photonic switching module with a single stage CMOS-SEED chip,” Chinese Journal of Lasers, Vol. 24, No.11, pp. 989-992 (1997) (In Chinese).

87.    Z. Liu, M. Cao, A. Wan, H. Li, Z. Li, R. Wu, H. Chen, and W. Gao, “Experimental study of FET-SEED smart pixels,” Acta Optica Sinica, Vol. 17, No. 6, pp. 786-789 (1997) (In Chinese).

88.    Z. Liu, M. Cao, H. Li, A. Wan, and Z. Li, “FET-SEED smart pixel (2, 2, 2) photonic switching nodes used in free-space photonic switching network,”Acta Photonica Sinica, Vol. 25, No. 4, pp. 289-293 (1995). (In Chinese).

89.    F. Luo, M. Cao, H. Li, A. Wan, J. Xu, and Z. Li, “Research of MOCVD Laser-assisted electatomic layer epitaxy reactor,” Acta Photonica Sinica, Vol. 25, No. 4, pp. 318-321 (1996). (In Chinese).

90.    Z. Liu, M. Cao, H. Li, A. Wan, and Z. Li, “Designs of FET-SEED smart pixel photonic switching nodes,” Chinese Journal of Lasers, Vol. 23, No. 8, pp. 756-760 (1996). (In Chinese).

91.    Y. Li, M. Cao, H. Li, F. Luo, A. Wan, and Jun Xu, “Property of a novel free-space optical Comega network,” Acta Optica Sinica, Vol. 16, No. 11, pp. 1585-1590 (1996). (In Chinese).

92.    Z. Liu, M. Cao, H. Li, A. Wan, and Z. Li, “Transformations between optical banyan networks and perfect shuffle networks and perfect shuffle networks and their implementation,” Chinese Journal of Lasers, Vol. 23, No. 9, pp. 852-856 (1996) (In Chinese).

93.    F. Luo, M. Cao, X. Zhao, H. Li, and Z. Li, “Measurement of diffractive efficiency for Fresnel microlens arrays,” Chinese Journal of Lasers, Vol. 22, No. 5, pp. 343-346 (1995) (In Chinese).

94.    Y. Liu, X. Lan and H. Li, “Study on simultaneously mode-locked and Q-switched Nd:YAG laser,” Laser & Technology, Vol. 19, No. 5, pp. 286-289 (1995) (In Chinese)

95.    #H. Li, M. Cao, J. Xu, F. Luo, and Z. Li, “The implement of four-function interchange nodes based on an optical crossover switching network,” Chinese Journal of Lasers, Vol. 22, No. 7, pp. 546-550 (1995). (In Chinese).

96.    #H. Li, M. Cao, X. Zhao, F. Luo, J. Xu, and Z. Li, “The research on free-space crossover micro-optical interconnection package,” Chinese Journal of Lasers, Vol. 22, No. 2, pp. 155-160 (1995) (In Chinese).

97.    J. Ai, M. Cao, Y. Li, H. Li, F. Luo, J. Xu, and Z. Li, “Optical implementation of 64x64 crossover interconnection functions,” Acta Optica Sinica, Vol. 15, No. 5, pp. 586-592 (1995) (In Chinese).

98.    M. Cao, H. Li, J. Ai, F. Luo, J. Xu, L. Wu, and W. Gao, “The matrix analysis for an optical free-space switching network and an optical crossover network with four-function interchange nodes,” Optics & Laser Technology, Vol. 26, No. 4, pp. 271-280 (1994).

99.    M. Cao, H. Li, F. Luo, and D. Liu, “Free-space regular optical interconnections: a mathematical analysis,” Appl. Optics, Vol. 33, No. 14, pp. 2960-2967 (1994).

100. J. Ai, M. Cao, H. Li, F. Luo, and Z. Li, “A general algorithm to determine the topological equivalence of optical interconnection networks,” Optics Commun., Vol. 105, No. 1-2, pp. 39-46 (1994).

101. J. Ai, M. Cao, Z. Li, H. Li, F. Luo, and J. Xu, “Topological equivalence of free-space photon switching nonblocking Banyan network with rearrangeable Bens network,” Opto-Electronic Engineering, Vol. 21, No. 2, pp. 8-14 (1994). (In Chinese).

102. #H. Li, M. Cao, F. Luo, J. Ai, J. Xu and Z. Li, “A novel of optoelectronic hybrid parallel processing system for polynomial evaluation,” Acta Photonica Sinica, Vol. 23, No. 5, pp. 392-395 (1994). (In Chinese).

103. F. Luo, M. Cao, X. Zhao, H. Li, J. Ai, J. Xu, and Z. Li, “A new method of photosensitive thermal formation for microlens array,” Opto-Electronic Engineering, Vol. 21, No. 4, pp. 1-2 (1994). (In Chinese).

104. F. Luo, M. Cao, X. Zhao, H. Li, J. Ai, J. Xu, and Z. Li, “Fabriction and application of phase Fresnel microlens arrays in module of optical interconnection,” Optronics Lasers, Vol. 7, No. 4, pp. 82-86 (1994). (In Chinese).

105. J. Ai, M. Cao, H. Li, J. Xu, F. Luo, and Z. Li, “The matrix description of interconnection function of optical perfect shuffle network and its application,” Acta Photonica Sinica, Vol. 23, No. 4, pp. 289-292 (1994). (In Chinese).

106. F. Luo, M. Cao, X. Zhao, H. Li, J. Ai, J. Xu, and Z. Li, “A novel superlarge spots arrays beam splitting,” High Technology Letters, Vol. 7, No. 4, pp. 26-28 (1994). (In Chinese).

107. J. Ai, M. Cao, Z. Li, H. Li, F. Luo, and J. Xu, “Topological equivalence variety of optical interconnection Omega network with crossover network,” Acta Photonica Sinica, Vol. 23, No. 3, pp. 193-198 (1994). (In Chinese).

108. F. Luo, M. Cao, H. Li, and Z. Li, “The realization of an equivalent optically interconnected network with perfect shuffle/exchange for optical computation,” J. Huazhong Univ. of Sci. & Tech., Vol. 22, No. 3, pp. 108-111 (1994). (In Chinese).

109. F. Luo, M. Cao, H. Li, S. Wang, J. Ai and J. Xu “Optical comparing and exchanging approach realized in interconnection network,” Acta Photonica Sinica, Vol. 23, No. 3, pp. 206-211 (1994). (In Chinese).

110. #H. Li, X. Lan, and Y. Liu, “The instantaneous pulse evolution in active mode-locked laser,” Chinese Laser & Technology, Vol. 18, No. 1, pp. 12-16 (1994). (Citations: 2) (In Chinese).

111. #H. Li, M. Cao, Y. Li, and F. Luo “Analysis on the stability of active semiconductor bistable amplifier,”, Acta Photonica Sinica, Vol. 23, No. 3, pp. 278-283, 1994 (In Chinese).

112. #H. Li, M. Cao, F. Luo, and Y. Li, “Computer generated holographic Fresnel lens and its application in the micro-optical interconnection,” OptronicsLasers, Vol. 5, No. 3, pp. 154-163 (1994). (In Chinese).

113. #H. Li, M. Cao, F. Luo, and Z. Li, “Perfect shuffle optical interconnection using the matrix method,” J. Huazhong Univ. of Sci. & Tech., Vol. 22, No. 3, pp. 112-116 (1994). (Citations:2) (In Chinese).

114. F. Luo, J. Xu, M. Cao, H. Li, and J. Ai, “Optical implementation method of full-permutation non-blocking double Omega optical interconnection network in optical computing,” Chinese Journal of Lasers, Vol. 21, No. 3, pp. 220-224 (1994). (In Chinese).

115. J. Ai, M. Cao, Z. Li, H. Li, and F. Luo, “Interconnection matrix of the Banyan network and its simulation study,” Acta Optica Sinica, Vol. 14, No. 5, pp. 513-517 (1994). (In Chinese).

116. J. Ai, M. Cao, Z. Li, H. Li, and F. Luo, “Topological equivalence variety of optical crossover networks with SW Banyan (F=S=2) networks,” Chinese Journal of Lasers, Vol. 21, No. 2, pp. 131-135 (1994). (In Chinese).

117. #H. Li, M. Cao, F. Luo, J. Xu, and Z. Li, “Implement of the optical Banyan nonblocking four ports switching network,” Acta Optica Sinica, Vol. 14, No. 4, pp. 416-420 (1994). (In Chinese).

118. F. Luo, M. Cao, H. Li, Y. Li, L. Huang, J. Ai, J. Xu, and Z. Li, “Dammann grating beam splitter with 65×65 spot arrays,” High Technology Letters, Vol. 7, No. 6, pp. 1-4 (1994). (In Chinese).

119. F. Luo, M. Cao, H. Li, Y. Li, J. Xu, and Z. Li, “Fabrication and research of large array two-dimensional Dammann grating,” Semiconductor Optoelectronics, Vol. 15, No. 1, pp. 55-58 (1994). (In Chinese).

120. #H. Li, M. Cao, F. Luo, J. Ai, and J. Xu, “Parallel processing for polynomial evaluation with a novel optical interconnection: the inverse perfect shuffle,” Optics Commun., Vol. 103, No. 5-6, pp. 350-354 (1993).

121. Y. Liu, X. Nan, T. Cheng, and H. Li, “An analysis of high power active-mode-locked Q-switched YAG laser,” Laser Technique, Vol. 17, No. 1, pp. 11-15 (1993). (In Chinese).

122. #H. Li, M. Cao, F. Luo, J. Ai, and J. Xu, “Optical implementation of inverse perfect shuffle,” The High Technology Letters, Vol. 6, No. 8, pp. 8-11 (1993). (In Chinese).

123. #H. Li, M. Cao, F. Luo, and Y. Li, “The experimental study on an InGaAsP/InP active semiconductor bistable amplifier,” Chinese Journal of Quantum Electronics, Vol. 10, No. 4, pp. 325-327 (1993). (In Chinese).

124. J. Ai, M. Cao, Z. Li, H. Li, F. Luo, and J. Xu, “Optical rearrangeable crossover-reverse crossover networks and their multiple sets of logical names topologically equivalent with the Benes network,” Miniature Computer System, Vol. 14, No. 12, pp. 8-15 (1993). (In Chinese).

125. #H. Li, M. Cao, F. Luo, J. Ai, and J. Xu, “The research of Titanium-doped sapphire laser pumped by Ar+3 Laser,” Applied Laser, Vol. 13, No. 6, pp. 262-263 (1993). (In Chinese).

126. #H. Li, S. Dong, and X. Lan, “The research of high power Q-switched and mode-locked CW Nd:YAG laser,” Applied Laser, Vol. 13, No. 3, pp. 139-141 (1993). (In Chinese).

127. #H. Li, X. Lan, S. Dong, and Y. Liu, “The optimum design of thermal-insensitive resonator in active mode-locked Nd:YAG laser,” Laser & Infrared, Vol. 23, No. 3, pp. 31-34 (1993). (In Chinese).

128. M. Cao, F. Luo, H. Li, J. Ai, and J. Xu, “An optical Omega network with optical exchange-switch of four functions for digital switch network,” Acta Optica Sinica, Vol. 13, No. 12, pp. 1105-1109 (1993). (In Chinese).

129. M. Cao, F. Luo, H. Li, and S. Wang, “Optical perfect-shuffle-exchange interconnection network using a liquid-crystal spatial light switch,” Appl. Optics, Vol. 31, No. 32, pp. 6817-6819 (1992).

130. X. Lan, H. Li, Y. Liu, and S. Dong, “Study of simultaneous mode-locked and Q-switching Nd:YAG laser” Laser & Infrared, Vol. 22, No. 3, pp. 41-43 (1992). (In Chinese).

131. X. Liu, M. Cao, H. Li, and F. Luo, “The research of binary symbolic substitution adding rules in experiments,” Applied Laser, Vol. 12, No. 2, pp. 51-53 (1992). (In Chinese).

132. M. Cao, H. Li, F. Luo, and L. Lian, “Optical implement of perfect shuffle/ exchange Omega interconnection network,” Acta Optica Sinica, Vol. 12, No. 12, pp. 1129-1134 (1992). (In Chinese).

133. M. Cao, H. Li, X. Liu, S. Chen, L. You, and Y. Yang, “Optical hardware for the perfect shuffle interconnection,” Optical Computing and Processing, Vol. 1, No. 1, pp. 23-27(1991).

134. M. Cao, Y. Li, X. Liu, H. Li, and S. Chen, “Experimental study of optical parallel cache memory arrays,” Acta Optica Sinica, Vol. 11, No. 9, pp. 790-793 (1991). (In Chinese).