A@’˜‘E–|–ó@@@@@
(1) Optical Fiber Components: Design and
Applications, Book chapters, H. Li, Y. Sheng, and J. E. Rothenberg, Research Signpost, 2006 ISBN:81-308-0097-7. Page. 1-25, Page. 99-120. @
@@
B@Šwp˜_•¶ (# Corresponding author)
1.
Z. Meng, J. A. Jamy, Y. Kotani, P.
Wang, H. Zhao, and
#H. Li, gFlexible
generation of azimuthally/radially polarized beams and hybrid polarized vortex beam
using a thinned helical fiber grating,h Opt.
Lett., Vol. 49, No. 20, pp. 5917-5920 (2024). DOI: 10.1364/OL.540228
2. Z. Meng, H. Zhao, Y. Seo, S. Oiwa, P. Wang, and #H. Li, gObservation of the enhanced dual-split photonic spin
Hall effect in wavelength domain via a helical fiber grating,h Appl. Phys. Lett., Vol. 125, No. 12, 121101 (2024). DOI:
10.1063/5.0225601
3. Z.
Meng, N. Mochzuki, S. Oiwa, H. Zhao, P. Wang, and #H. Li, gHelical
long-period fiber grating-based band-selectable and bandwidth-enhanced flat-top
filter and its application to wideband OAM mode converter,h IEEE J. Quantum Electron., Vol. 60, N0. 4, 6800208 (2024). DOI: 10.1109/JQE.2024.3410234
4. X.
Huang, H. Lu, Y. Chen, Y. Wang, Z. Kong, #H.
Hao, H. Zhao, P. Wang, X. Wang and #H. Li,
gFull C- and L-band covered second-order OAM mode generator based on a thinned helical
long-period fiber grating,h Optics
Express, Vol. 32, No.11, pp. 18717-18726 (2024). DOI:10.1364/OE.525436
5. H. Zhang,
Y. Chen, X. Huang, Y. Wang, W. Zhang, H. Lu, X. Ni, #H. Hao, H. Zhao, P. Wang,
and #H. Li, gTemperature-insensitive high-sensitivity refractive index sensor
based on a thinned helical fiber grating with an intermediate period,h Optics Express, Vol. 32, No. 1, pp. 599-608
(2024). DOI:10.1364/OE.512477
6. C. Zhu,
C. Tang, S. Huang, Z. Qu, Y.
Zhao, and H. Li, gCross-sensitivity-free highly Sensitive torsion
and strain sensor based on concatenated DTP-customizable helical fiber gratings,h
IEEE Sensors Journal, Vol. 23, No. 22, pp. 27423-27430 (2023). DOI: 10.1109/JSEN.2023.3323153.
7. Z.
Meng, C. Zhu, and #H. Li,
gThe underlying mechanism for mode-coupling and
mode-propagation in a deeply-tapered few-period long-period fiber grating,h
IEEE Photon. Technol.
Lett., Vol. 35, No. 22, pp. 1223-1226 (2023). DOI: 10.1109/LPT.2023.3313552
8. H.
Zhao, C. Guo, J. Xu, H. Lu, H. Hao, and H. Li,
gProbe-type all-fiber tiny-displacement sensor based on
orbital-angular-momentum interferometry,h Opt.
Lett., Vol. 48, No. 20, pp. 5209-5212
(2023).
9. H.
Zhao, J. Xu, Y. Hao, J. Xu, H. Lu, H. Hao, T. Zhao, P.
Li, P. Wang, and H. Li, gRecognition of the
orbital-angular-momentum spectrum for hybrid modes existed in a few-mode fiber
via a deep learning method,h Optics
Express, Vol. 31, No. 19, pp. 30627-30638
(2023).
DOI: 10.1364/OE.501065.
10. C. Zhu,
S. Huang, X. Meng, Y. Zhao, and H. Li, gDeeply-tapered ultrashort
long-period fiber grating and its application to ultrasensitive transverse-load
sensor,h IEEE J. Lightwave Technol., Vol. 41, No. 18, pp. 6108-6115 (2023). DOI: 10.1109/JLT.2023.3275589
11. Z.
Meng, N. Mochzuki, S. Oiwa, H. Zhao, P. Wang, C. Zhu, and #H. Li, gFull
C-band covered and DWDM channelized high channel-count all-fiber
orbital-angular-momentum mode generator based on the fiber gratings,h Optics Express, Vol. 31, No. 18, pp. 28734-28746
(2023).
12. S. Huang,
C. Zhu, C. Tang, G. Yang, Y.
Zhao, and H. Li,
gMiniature Temperature-independent curvature sensor based on a phase-shifted
long-period fiber grating using deep tapering,h IEEE Sensors Journal, Vol. 23, No. 13, pp. 14174 - 14181(2023).
DOI: 10.1109/JSEN.2023.3279127.
13. Z.
Zhang, K. Gao, H. Zhang, J. Wu, H. Hao, #H. Zhao, P. Wang, and #H. Li,
gPower-interrogated torsion and strain sensor based on a helical long-period
fiber grating written in a thinned four-mode fiber,h IEEE J. Quantum Electron., Vol. 59, No. 3, 770010 (2023). DOI: 10.1109/JQE.2023.3262812.
14. C. Guo,
J. Xu, H. Lu, H. Hao, #H. Zhao, P. Wang, and #H. Li, gHelical long-period fiber grating-based OAM
interferometer and its application to fiber sensing,h IEEE J. Lightwave Technol., Vol. 41, No. 8, pp. 2572-2577(2023).
DOI: 10.1109/JLT.2023.3234409.
15. #C.
Zhu, Q. Piao, L. Wang, Z. Bing, Y. Zhao, H. Zhao, and #H. Li, gUltra-wideband OAM mode generator based on a helical
grating written in a graded-index few-mode fiber,h IEEE J. Lightwave Technol., Vol. 41, No. 5, pp. 1533-1538
(2023). DOI: 10.1109/JLT.2022.3222654.
16. H. Lu,
X. Huang, C. Guo, J. Xu, J. Xu, H. Hao, #H.
Zhao, W. Tang, P. Wang, and #H. Li,
gOrbital-angular-momentum beams-based Fizeau interferometer using the advanced
azimuthal- phase-demodulation method,h Appl. Phys. Lett., Vol.
121, No. 24, 241102 (2022). DOI: 10.1063/5.0122253.
17. C. Zhu,
Q. Piao, Y. Zhao, and #H. Li, gUltra-broad edge filter based on a
periodically twisted graded-index fiber and its application to
power-interrogated temperature sensor,h Opt.
Express, Vol. 30, No. 19, pp. 34776-34786
(2022).
18. Y. Hao,
C. Guo, X. Huang, J. Xu, H. Lu, #H. Zhao, P. Wang, and #H.
Li, gSynthesizing the complex orbital-angular-momentum spectrum of
hybrid modes existed in a few-mode fiber,h Opt.
Express, Vol. 30, No. 15, pp. 26286-26296
(2022).
19. C. Zhu,
Z. Bing, L. Wang, Q. Piao,
S. Hu, J. Lv, Y. Zhao, and H. Li, gReflective-type multi-parameter sensor based on a
paired helical fiber gratings and a trapezoid-like micro cavity,h IEEE Trans. on Instr.
& Meas., Vol. 71, 7003508. pp. 1-8 (2022).
20. C. Zhu,
L. Wang, and #H. Li, gPhase-inserted fiber gratings
and their applications to optical filtering, optical signal processing, and
optical sensing: review,h Photonics, Vol. 9, No. 4, 271 (2022).
21. K. Gao, Z. Zhang, B. Huang, H. Hao, H. Zhao, P. Wang, and H. Li,
gBroadband edge filter based on a helical long-period fiber grating and its
application to a power-interrogated torsion sensor,h
J. Opt. Soc. Am. B, Vol. 39, No. 4,
pp. 1075-1081 (2022).
22. H. Lu,
Y. Hao, C. Guo, X. Huang, H. Hao, D. Guo, H. Zhao,
W. Tang, P. Wang and #H. Li, gNano-displacement
measurement system using a modified orbital angular momentum interferometer,h
IEEE J. Quantum Electron., Vol. 58, No. 2, 7500105 (2022).
23. C. Zhu,
L. Wang. H. Zhao, Z. Bing, Y. Zhao, and H. Li, gDual-triangular filter based on an
optimized phase-modulated helical fibre grating,h Optics Commun., Vol. 503, 127452 (2022).
24. H.
Zhao, Z. Zhang, M. Zhang, Y. Hao, P. Wang, and H. Li,
gBroadband flat-top second-order OAM mode converter based on a phase-modulated
helical long-period fiber grating,h Opt.
Express, Vol. 29, No. 18, pp. 29518-29526 (2021).
25. C. Zhu,
Y. Zhao, M. Chen, R. Tong, S. Hu, and H. Li, gSimultaneous measurement of directional torsion and
temperature by using a DC-sampled helical long-period fiber grating,h Opt. Laser Techn., Vol. 142, 107171
(2021).
26. C. Zhu,
L. Wang, Z. Bing, R. Tong, M. Chen, S. Hu, Y. Zhao, and H. Li, gUltra-broadband OAM mode generator based on a
phase-modulated helical grating working at a high radial-order of cladding mode,h
IEEE J. Quantum Electron., Vol. 57, No. 4, 6800307 (2021).
27. R.
Mizushima, T. Detani, C. Zhu, P. Wang, H.
Zhao, and #H. Li, gThe
superimposed multi-channel helical long-period fiber grating and its
application to multi-channel OAM mode generator,h IEEE J. Lightwave Technol., Vol. 39, No. 10, pp. 3269-3275(2021).
28. H. Zhao, and #H. Li,
gAdvances on mode-coupling theories, fabrication techniques, and applications
of the helical long-period fiber gratings: a review,h Photonics, Vol. 8, No. 4, 106
(2021).
29. T.
Detani, H. Zhao, P. Wang, and T. Suzuki, #H. Li, gSimultaneous generation of
the second- and third-order OAM modes by using a high-order helical long-period
fiber grating,h Opt. Lett., Vol. 46,
No. 5, pp. 949 -952 (2021).
30.
P. Wang, H. Zhao, T. Detani, and #H. Li,
gSimultaneous generation of the first- and second-order OAM using the cascaded
HLPGs,h IEEE Photon. Technol. Lett., Vol.
32, No. 12, pp. 685-688 (2020).
31. P.
Wang, H. Zhao, T. Detani, Y. Tsuyuki, and #H. Li, gDemonstration of the mode-selection
rules obeyed in a single-helix helical long-period fiber grating,h Opt. Lett., Vol. 45, No. 7, pp. 1846-1849 (2020).
32.
P. Wang, H. Zhao, T.
Yamakawa, and #H. Li,
gPolarization-independent flat-top band-rejection filter based on the
phase-modulated HLPG,h IEEE Photon. Technol. Lett., Vol. 32,
No. 3, pp. 170-173 (2020).
33. H. Zhao, M. Zhang, and H. Li, gModal-dispersion
effects on the spectra of the helical long-period fibre grating-based
components,h Optics
Commun., Vol. 457, pp. 124708 (2020).
34. H. Zhao, P. Wang, T.
Yamakawa, and #H. Li, gAll-fiber second-order
orbital angular@momentum generator based on a single-helix
helical fiber grating,h Opt. Lett.,
Vol. 44, No. 21, pp. 5370-5373 (2019).
35.
C. Zhu, P. Wang, H. Zhao, S. Ishikami, R. Mizushima, and #H. Li, gDC-sampled helical long-period fiber grating and its
application to the multichannel OAM generator,h IEEE Photon. Technol. Lett., Vol. 31,
No.17, pp. 1445-1448 (2019).
36. H. Zhao, M. Zhang, C. Zhu, and
H. Li, gMultichannel
Fiber Bragg Grating Based on DC-sampling Method,h Optics Commun., Vol. 445, pp. 142-146
(2019).
37. C. Zhu, S.
Ishikami, H. Zhao, and
#H. Li,
gMultichannel long-period fiber grating realized by using the helical sampling approach,h IEEE/OSA J. Lightwave Technol., Vol. 37, No. 9, pp. 2008-2013 (2019).
38. C. Zhu, S.
Ishikami, P. Wang, H. Zhao, and #H. Li, gOptimal design and fabrication of
multichannel helical long-period fiber gratings based on phase-only sampling
method,h Opt. Express, Vol. 27, No.
3, pp. 2281-2291 (2019).
39. C. Zhu, T.
Yamakawa, H. Zhao, and
#H. Li, gAll-fiber circular polarization filter realized by
using helical long-period fiber gratings,h IEEE Photon. Technol. Lett., Vol. 30,
No. 22, pp. 1905-1908 (2018).
40. C. Zhu, H. Zhao, and H.
Li, gMode-couplings in two cascaded helical long-period
fibre gratings and their application to polarization-insensitive band-rejection
filter,h Optics Commun., Vol.
423, pp. 81-85
(2018).
41. H. Zhao, C. Zhu, and #H. Li,
gDesign of an edge filter based on a phase-only modulated long-period fiber
grating,h IEEE Photonics Journal, Vol. 10, No. 3, p. 7102409
(2018).
42. H. Zhao and #H. Li, gEnhancement
of high-order azimuthal mode couplings in a single-helix helical
long-period fiber grating by using the phase-sampling method,h IEEE Photon.
Technol. Lett., Vol. 30, No. 7, pp.
630-633 (2018).
43. R.
Subramanian, C. Zhu, H. Zhao, and #H. Li, gTorsion, strain, and temperature sensor based on helical long-period fiber
gratings,h
IEEE Photon. Technol. Lett., Vol. 30,
No. 4, pp.
327-330 (2018).
44. H.
Zhao, C. Zhu, R. Subramanian, and #H. Li, gComprehensive
analysis for the consecutively-cascaded single-helix long-period fiber gratings
with opposite helicities,h IEEE J.
Quantum Electron., Vol. 54, No. 1, p. 6800606 (2018).
45. H.
Zhao, P. Wang, C. Zhu, R. Subramanian, and #H. Li, gAnalysis for the phase-diffusion effect
in a phase-shifted helical long-period fiber grating and its pre-compensation,h Opt. Express,
Vol. 25, No. 16, pp. 19085-19093 (2017).
46. C. Zhu,
H. Zhao, P. Wang, R. Subramanian, and #H. Li, gEnhanced flat-top band-rejection filter based on reflective helical
long-period fiber gratings,h IEEE
Photon. Technol. Lett., Vol. 29, No. 12, pp.
964 -966 (2017).
47. P. Wang, R. Subramanian, C. Zhu, H. Zhao, and #H. Li, gPhase-shifted helical long-period fiber grating and its characterization by
using the microscopic imaging method,h Opt. Express, Vol. 25, No. 7, pp. 7402-7407
(2017).
48. G. Inoue, P. Wang, and #H. Li, gFlat-top
band-rejection filter based on two successively-cascaded helical fiber
gratings,h Opt.
Express, Vol. 24, No. 5, pp. 5442-5447(2016).
49. Peng Wang and #H. Li, gHelical long-period grating formed in a thinned
fiber and its application to refractometric sensor,h Applied Optics, Vol. 55, No. 6, pp.
1430-1434 (2016).
50. #H. Li and X. Chen, gEnergy-efficient optical pulse multiplication and shaping
based on a triply sampled filter utilizing a fiber Bragg grating,h IEEE/OSA J. Lightwave Technol., Vol. 33, No. 10, pp. 2167-2176 (2015).
51. P.
Wang, L. X, and #H. Li, gFabrication of phase-shifted long-period fiber grating
and its application to strain measurement,h IEEE
Photon. Technol. Lett., Vol. 27, No. 5, pp. 557-560 (2015).
52. L. Xian, P. Wang, and #H. Li,
gPower-interrogated and simultaneous measurement of temperature and torsion
using paired helical long-period fiber gratings with opposite helicities,h Opt. Express,
Vol. 22, No.17, pp. 20260-20267 (2014).
53. #H. Li
and X. Chen, gHigh channel-count ultra-narrow comb-filter based on a triply
sampled fiber Bragg grating,h IEEE
Photon. Technol. Lett., Vol. 26, No. 11, pp. 1112-1115
(2014).
54. K.
Ogusu and #H. Li, gPulse response of nonlinear
multimode interference couplers,h IEEE J.
Quantum Electron., Vol. 50, No. 4, pp. 295-303
(2014).
55. K. Ogusu and #H. Li, gNormal-mode analysis of switching dynamics
in nonlinear directional couples,h IEEE/OSA
J. Lightwave Technol., Vol. 31, No.
15, pp. 2639-2646 (2013).
56. K. Hishiki and #H. Li, gPhase-shift formed in a long period fiber
grating and its application to the measurements of temperature and
refractive-index,h Opt. Express Vol.
21, No.10, pp. 11901-11912 (2013).
57. L. Xian and #H. Li, gCalibration of a phase-shift formed in a
linearly chirped fiber Bragg grating and its thermal effect,h IEEE/OSA J. Lightwave Technol., Vol. 31, No. 4, pp. 1185-1190 (2013).
58. L. Xian, P. Wang, K. Ogusu, and #H. Li, gCladding mode coupling in
a wide-band fiber Bragg grating and its application to a power-interrogated
temperature sensor,h IEEE Photon.
Technol. Lett., Vol. 25, No. 3, pp. 231-233 (2013).
59. X. Chen, L. Xian, K. Ogusu, and #H. Li, gSingle-longitudinal-mode
Brillouin fiber laser,h Applied Physics
B-Lasers and Optics, Vol. 107, No. 3, pp. 791-794 (2012).
60. X. Chen, K. Ogusu, and #H. Li, gPhase-Shift induced in a
high-channel-count fiber Bragg grating and its application to multiwavelength
fiber ring laser,h IEEE Photon. Technol.
Lett., Vol. 23, No. 8, pp. 498- 500 (2011).
61. X. Chen, J. Hayashi, and #H. Li, gUltrahigh-channel-count fiber
Bragg grating based on the triple-sampling method,h Optics Commun., Vol. 284, pp. 1842-1846 (2011).
62. X. Chen, T. Kameyama, Ming Li, and #H. Li, gMultiple
dual-wavelengths fiber ring laser utilizing a phase-only sampled fiber Bragg
grating with multiple phase-shifts inserted,h Applied Physics B-Lasers and Optics, Vol. 101, No. 1, pp. 115-118
(2010).
63. X. Chen, Y. Painchaud, K. Ogusu, and #H. Li, gPhase shifts induced
by the piezoelectric transducers attached to a linearly chirped fiber Bragg
grating,h IEEE/OSA J. Lightwave Technol.,
Vol. 28, No. 14, pp. 2017-2022 (2010).
64. X. Chen, J. Hayashi, and #H. Li, gSimultaneous dispersion and
dispersion-slope compensator based on a doubly-sampled ultrahigh-channel-count
fiber Bragg grating,h Applied Optics,
Vol. 49, No. 5, pp. 823-828 (2010).
65. X. Chen and #H. Li, gSimultaneous
optical pulse multiplication and shaping based on an amplitude-assisted
phase-only filter utilizing a fiber Bragg grating,h IEEE/OSA J. Lightwave Technol. Vol. 27, No. 23, pp. 5246-5252
(2009).
66. M. Li, T. Fujii, and #H. Li, gMultiplication of a multi-channel
notch filter based on a phase shifted phase-only sampled fiber Bragg grating,h IEEE Photon. Technol. Lett.. Vol. 21,
No. 13, pp. 926-928 (2009).
67. M. Li, X. Chen, T. Fujii, Y. Kudo, #H. Li, and Y. Painchaud, gMultiwavelength fiber laser based on
the utilization of a phase-shifted phase-only sampled fiber Bragg grating,h Opt. Lett. Vol. 34,
No. 11, pp. 1717-1719 (2009).
68. M. Li, X. Chen, J. Hayashi, and #H. Li, gAdvanced design of the
ultrahigh-channel-count fiber Bragg grating based on the double sampling
method,h Opt. Express Vol. 17, No.10,
pp. 8382-8394 (2009).
69. #H. Li, M. Li, and J. Hayashi, gUltrahigh channel-count phase-only
sampled fiber Bragg grating covering the S-, C- and L-band,h Opt. Lett. Vol. 34, No. 7, pp. 938-940
(2009).
70. M. Li, T. Fujii, #H.
Li, and Y. Painchaud, gProposal and realization for a broadband all-fiber non-uniformly spaced multi-channel
optical filter,h Optics Commun., Vol. 282, pp. 879-882
(2009).
71. M. Li, J. Hayashi, and #H. Li, gAdvanced design of complex fiber
Bragg grating for multi-channel triangular filter,h
J. Opt. Soc. Am. B, Vol. 26, No. 2,
pp. 228-234 (2009).
72. M. Li and #H. Li, gInfluences of writing-beam size on the
performances of dispersion-free multi-channel fiber Bragg grating,h Optical Fiber Technology, Vol. 15, No.
1, pp. 33-38 (2009).
73. M. Li, #H. Li, and Y. Painchaud, gMulti-channel notch filter based on a phase-shifted phase-only-sampled fiber Bragg
grating,h Optics Express Vol.
16, No. 23, pp. 19388-19394 (2008).
74. M. Li, T. Takahagi,
K. Ogusu, #H.
Li, and Y. Painchaud,
gA comprehensive study of the chromatic
dispersion measurement of the multi-channel fiber
Bragg grating based on an asymmetrical Sagnac loop interferometer,h Optics Commun., Vol. 281, pp. 5165-5172
(2008).
75. M. Li and #H. Li, gReflection equalization of the simultaneous
dispersion and dispersion-slope compensator based on a phase-only sampled fiber
Bragg grating,h Optics Express Vol.
16, No. 13, pp. 9821-9828 (2008).
76. M. Li and #H. Li, gChromatic dispersion measurement for multi-channel FBG based on a
novel asymmetrical Sagnac loop interferometer,h IEEE Photon. Technol. Lett., Vol. 19, No. 20, pp.1601-1603 (2007).
77. #H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, gAdvances in the
design and fabrication of high channel-count fiber Bragg gratings,h IEEE J. Lightwave Technol., Vol. 25, No.
9, pp. 2739-2749 (2007).
78. M. Li, M. Wang, H. Rong, and H. Li, gA novel analytical approach
for multi-Layer diaphragm-based optical micro-electromechanical-system pressure
sensors,h Chinese Phys. Lett. Vol. 23, No. 5, pp. 1211-1214
(2006).
79. J. E. Rothenberg, #H. Li, Y. Sheng, J. Popelek, and J. Zweiback,,
gPhase-only sampled 45 channel fiber Bragg grating written with a
diffraction-compensated phase mask,h Opt.
Lett. Vol. 31, No. 9, pp. 1199-1201 (2006).
80. #H. Li, M. Li, K. Ogusu, Y. Sheng, and J. E. Rothenberg,
gOptimization of a continuous phase-only sampling for high channel-count fiber
Bragg gratings,h Optics Express Vol.
14, No. 8, pp. 3152 – 3160 (2006).
81. M. Li, M. Wang, and H. Li, gOptical MEMS pressure sensor based on
Fabry-Perot interferometry,h Optics
Express Vol. 14, No. 4, pp. 1497-1504 (2006).
82. gPhoto-oxidation of As2Se3, Ag-As2Se3,
Cu-As2Se3 chalcogenide films,h K. Ogusu, Y. Hosokawa, S.
Maeda, M. Minakata, and H. Li, J.
Non-cryst. Solides Vol. 351, pp.
3132-3138 (2005).
83. #H. Li, Y. Nakamura, K. Ogusu, Y. Sheng, and J. E. Rothenberg,
gInfluence of cladding-mode coupling losses on the spectrum of a linearly
chirped multi-channel fiber Bragg grating,h Optics
Express Vol. 13, No. 4, pp. 1281-1290 (2005).
84. K. Ogusu, S.Maeda, M. Kitao, H. Li, and M. Minakata, gOptical and
structural properties of Ag(Cu)-As2Se3 chalcogenide films
prepared by a photodoping,h J. Non-cryst. Solides Vol.347, pp.159-165 (2004).
85. #H. Li, T. Kumagai, K. Ogusu, and Y. Sheng, gAdvanced design of multi-channel fiber Bragg grating
based on a layer-peeling method,h J. Opt.
Soc. Am. B. Vol. 21, No. 11, pp. 1929-1938 (2004).
86. K. Ogusu, H. Li, and M. Kitao, gBrillouin-gain coefficients of
chalcogenide glassesh J. Opt. Soc. Am. B.
Vol. 21, No. 7, pp. 1302-1304 (2004).
87. Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback,
gSplit of phase-shifts in phase mask for fiber Bragg grating,h IEEE Photon. Technol. Lett. Vol. 16, No.
5, pp. 1316-1318 (2004).
88. #H. Li and Y. Sheng, gDirect design of multichannel fiber Bragg
grating with discrete layer-peeling algorithm,h IEEE Photon. Technol. Lett., Vol. 15, No. 9, pp. 1252-1254 (2003).
89. #H. Li, Y. Sheng, Y. Li, and J. E.
Rothenberg, gPhased-only sampled fiber Bragg gratings for
high-channel-count chromatic dispersion compensation,h IEEE J. Lightwave Technol., Vol. 21, No. 9, pp. 2074-2083 (2003).
90. Y. W. Song, S. M. R. Motaghian Nezam, D. Starodubov, J. E.
Rothenberg, Z. Pan, H. Li, R. Wilcox, J. Popelek, R. Caldwell, V. Grubsky, and
A. E. Willner, gTunable interchannel broad-band dispersion-slope compensation
for 10-Gb/s WDM systems using a nonchannelized third-order chirped FBG,h IEEE Photon. Technol. Lett., Vol. 15,
No. 1, pp. 144-146 (2003).
91. Z. Pan, Y. W. Song, C. Yu, Y. Wang, Q. Yu, J. Popelek, H. Li, Y.
Li, and A. E. Willner, gTunable chromatic dispersion compensation in 40-Gb/s
systems using nonlinearly chirped fiber Bragg gratings,h IEEE J. Lightwave Technol., Vol. 20, No. 12, pp. 2239-2245 (2002).
92. Y. W. Song, Z. Pan, S. M. R. Motaghian Nezam, C. Yu, Y. Wang, D.
Starodubov, V. Grubsky, J. E. Rothenberg, J. Popelek, H. Li, Y. Li, R.
Caldwell, R. Wilcox, and A. E. Willner, gTunable dispersion slope compensation
for 40-Gb/s WDM systems using broadband nonchannelized third-order chirped
fiber Bragg gratings,h IEEE J. Lightwave
Technol., Vol. 20, No. 12, pp. 2259-2266 (2002).
93. J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B.
Wilcox, and J. Zweiback, gDammann fiber Bragg gratings and phase-only sampling
for high channel counts,h IEEE Photon.
Technol. Lett., Vol. 14, No. 9, pp. 1309-1311 (2002).
94. H. Li and K. Ogusu, gTransient stimulated Brillouin scattering in
a fiber ring resonator and its effect on optical Kerr bistability,h J. Opt. Soc. Am. B, Vol. 18, No. 1, pp.
93-100 (2001).
95. H. Li and K. Ogusu, gInstability of stimulated Brillouin
scattering in a fiber ring resonator,h Opt.
Rev., Vol. 7, No. 4, pp. 303-308 (2000).
96. H. Li and K. Ogusu, gDynamic behavior of stimulated Brillouin
scattering in a single-mode optical fiber,h Jpn.
J. Appl. Phys. Part I, Vol. 38, No. 11, pp. 6309-6315 (1999).
97. H. Li and K. Ogusu, gAnalysis of optical instability in a
double-coupler nonlinerar fiber ring resonator,h Optics Commun., Vol. 157, No.1-6, pp. 27-32 (1998).
98. H. Li and K. Ogusu,gOptical nonlinearities of
Bis(4-dimethylaminodithiobenzil)-nickel solution in the nano-second regime,h Jpn. J. Appl. Phys. Part I, Vol. 37,
No.10, pp. 5572-5577 (1998).
99. #H. Li, M. Cao, F. Luo, and K. Ogusu, gOptical inverse perfect
shuffle interconnection and its application to polynomial evaluation,h Opt. Rev., Vol. 5, No. 3, pp. 138-142 (1998).
100. K. Ogusu, H. Li, and T. Kamizono, gAnalysis of transient optical
bistability and stability in a nonlinear fiber Fabry-Perot resonator based on
an iterative method,h Opt. Rev., Vol.
5, No. 3, pp. 185-190 (1998).
101. L. Luo, M. Cao, H. Li, A. Wan, J. Xu, and Z. Li, gNon-equal
distance phase computer-generated grating with 16x16 spot arrays applied to
light window distribution in optical switching package,h Chinese Journal of Lasers, Vol. 25, No. 1, pp. 72-76 (1998).
102. R. Wu, Z. Chen, W. Gao, M. Cao, A. Wan, Z. Liu, and H. Li, g8x8
multiple quantum well spatial light modulators for optical interconnection,h Chinese Journal of Lasers, Vol. 25, No.
7, pp. 603-608 (1998).
103. M. Cao, F. Luo, Y. Li, L. Wang, J. Xu, A. Wan, and H. Li, gA novel
free-space Comega network and its optical implementation,h Opt. Rev., Vol. 4, No.3, pp. 349-353 (1997).
104. L. Luo, M. Cao, H. Li, A. Wan, J. Xu, and Z. Li, gSimplify design
and analysis of 64~64 computer generated holographic phase grating with even
spot arrays in optical interconnection module,h Acta
Optica Sinica, Vol. 17, No. 10, pp 1335-1340 (1997). (In
Chinese).
105. #H. Li, M. Cao, J. Xu, F. Luo, and A. Wan, gResearch of
optoelectronic hybrid mesh interconnection network,h Acta Photonica Sinica, Vol. 26, No. 4, pp. 316-320 (1997). (In
Chinese).
106. Z. Liu,
M. Cao, H. Li, A. Wang, and Z. Li, gTransformations between optical crossover
networks and perfect shuffle networks and their implementation,h Optoelectronics Laser, Vol. 8, No.5, pp.
331-336 (1997). (In Chinese).
107. Z. Liu,
M. Cao, H. Li, F. Luo, and Z. Li, gAn ATM photonic switching module with a
single stage CMOS-SEED chip,h Chinese
Journal of Lasers, Vol. 24, No.11, pp. 989-992 (1997) (In Chinese).
108. Z. Liu,
M. Cao, A. Wan, H. Li, Z. Li, R. Wu, H. Chen, and W. Gao, gExperimental study
of FET-SEED smart pixels,h Acta Optica
Sinica, Vol. 17, No. 6, pp. 786-789 (1997) (In Chinese).
109. Z. Liu, M. Cao, H. Li, A. Wan, and Z. Li, gFET-SEED smart pixel
(2, 2, 2) photonic switching nodes used in free-space photonic switching
network,hActa Photonica Sinica, Vol.
25, No. 4, pp. 289-293 (1995). (In Chinese).
110. F. Luo, M. Cao, H. Li, A. Wan, J. Xu, and Z. Li, gResearch of
MOCVD Laser-assisted electatomic layer epitaxy reactor,h Acta Photonica Sinica, Vol. 25, No. 4, pp. 318-321 (1996). (In
Chinese).
111. Z. Liu, M. Cao, H. Li, A. Wan, and Z. Li, gDesigns of FET-SEED
smart pixel photonic switching nodes,h Chinese
Journal of Lasers, Vol. 23, No. 8, pp. 756-760 (1996). (In Chinese).
112. Y. Li, M. Cao, H. Li, F. Luo, A. Wan, and Jun Xu, gProperty of a
novel free-space optical Comega network,h Acta
Optica Sinica, Vol. 16, No. 11, pp. 1585-1590 (1996). (In Chinese).
113. Z. Liu, M. Cao, H. Li, A. Wan, and Z. Li, gTransformations between
optical banyan networks and perfect shuffle networks and perfect shuffle
networks and their implementation,h Chinese
Journal of Lasers, Vol. 23, No. 9, pp. 852-856 (1996) (In Chinese).
114. F. Luo, M. Cao, X. Zhao, H. Li, and Z. Li, gMeasurement of
diffractive efficiency for Fresnel microlens arrays,h Chinese Journal of Lasers, Vol. 22, No. 5, pp. 343-346 (1995) (In
Chinese).
115. Y. Liu,
X. Lan and H. Li, gStudy on simultaneously mode-locked and Q-switched Nd:YAG
laser,h Laser & Technology, Vol.
19, No. 5, pp. 286-289 (1995) (In Chinese)
116. #H. Li, M. Cao, J. Xu, F. Luo, and Z. Li, gThe implement of
four-function interchange nodes based on an optical crossover switching
network,h Chinese Journal of Lasers,
Vol. 22, No. 7, pp. 546-550 (1995). (In Chinese).
117. #H. Li, M. Cao, X. Zhao, F. Luo, J. Xu, and Z. Li, gThe research
on free-space crossover micro-optical interconnection package,h Chinese Journal of Lasers, Vol. 22, No.
2, pp. 155-160 (1995) (In Chinese).
118. J. Ai, M. Cao, Y. Li, H. Li, F. Luo, J. Xu, and Z. Li, gOptical
implementation of 64x64 crossover interconnection functions,h Acta Optica Sinica, Vol. 15, No. 5, pp.
586-592 (1995) (In Chinese).
119. M. Cao, H. Li, J. Ai, F. Luo, J. Xu, L. Wu, and W. Gao, gThe
matrix analysis for an optical free-space switching network and an optical
crossover network with four-function interchange nodes,h Optics & Laser Technology, Vol. 26, No. 4, pp. 271-280 (1994).
120. M. Cao, H. Li, F. Luo, and D. Liu, gFree-space regular optical
interconnections: a mathematical analysis,h Appl.
Optics, Vol. 33, No. 14, pp. 2960-2967 (1994).
121. J. Ai, M. Cao, H. Li, F. Luo, and Z. Li, gA general algorithm to
determine the topological equivalence of optical interconnection networks,h Optics Commun., Vol. 105, No. 1-2, pp.
39-46 (1994).
122. J. Ai, M. Cao, Z. Li, H. Li, F. Luo, and J. Xu, gTopological
equivalence of free-space photon switching nonblocking Banyan network with
rearrangeable Bens network,h Opto-Electronic
Engineering, Vol. 21, No. 2, pp. 8-14 (1994). (In Chinese).
123. #H. Li, M. Cao, F. Luo, J. Ai, J. Xu and Z. Li, gA novel of
optoelectronic hybrid parallel processing system for polynomial evaluation,h Acta Photonica Sinica, Vol. 23, No. 5,
pp. 392-395 (1994). (In Chinese).
124. F. Luo, M. Cao, X. Zhao, H. Li, J. Ai, J. Xu, and Z. Li, gA new
method of photosensitive thermal formation for microlens array,h Opto-Electronic Engineering, Vol. 21,
No. 4, pp. 1-2 (1994). (In Chinese).
125. F. Luo, M. Cao, X. Zhao, H. Li, J. Ai, J. Xu, and Z. Li,
gFabriction and application of phase Fresnel microlens arrays in module of
optical interconnection,h Optronics Lasers,
Vol. 7, No. 4, pp. 82-86 (1994). (In Chinese).
126. J. Ai, M. Cao, H. Li, J. Xu, F. Luo, and Z. Li, gThe matrix
description of interconnection function of optical perfect shuffle network and
its application,h Acta Photonica Sinica,
Vol. 23, No. 4, pp. 289-292 (1994). (In Chinese).
127. F. Luo, M. Cao, X. Zhao, H. Li, J. Ai, J. Xu, and Z. Li, gA novel
superlarge spots arrays beam splitting,h High
Technology Letters, Vol. 7, No. 4, pp. 26-28 (1994). (In Chinese).
128. J. Ai, M. Cao, Z. Li, H. Li, F. Luo, and J. Xu, gTopological
equivalence variety of optical interconnection Omega network with crossover
network,h Acta
Photonica Sinica, Vol. 23, No. 3, pp. 193-198 (1994). (In Chinese).
129. F. Luo, M. Cao, H. Li, and Z. Li, gThe realization of an
equivalent optically interconnected network with perfect shuffle/exchange for
optical computation,h J. Huazhong Univ.
of Sci. & Tech., Vol. 22, No. 3, pp. 108-111 (1994). (In Chinese).
130. F. Luo, M. Cao, H. Li, S. Wang, J. Ai and J. Xu gOptical comparing
and exchanging approach realized in interconnection network,h Acta Photonica Sinica, Vol. 23, No. 3,
pp. 206-211 (1994). (In Chinese).
131. #H. Li, X. Lan, and Y. Liu, gThe instantaneous pulse evolution in
active mode-locked laser,h Chinese Laser
& Technology, Vol. 18, No. 1, pp. 12-16 (1994). (Citations: 2) (In
Chinese).
132. #H. Li, M. Cao, Y. Li, and F. Luo gAnalysis on the stability of
active semiconductor bistable amplifier,h, Acta
Photonica Sinica, Vol. 23, No. 3, pp. 278-283, 1994 (In Chinese).
133. #H. Li, M. Cao, F. Luo, and Y. Li, gComputer generated holographic
Fresnel lens and its application in the micro-optical interconnection,h OptronicsELasers, Vol. 5, No. 3, pp. 154-163
(1994). (In Chinese).
134. #H. Li, M. Cao, F. Luo, and Z. Li, gPerfect shuffle optical
interconnection using the matrix method,h J.
Huazhong Univ. of Sci. & Tech., Vol. 22, No. 3, pp. 112-116 (1994).
(Citations:2) (In Chinese).
135. F. Luo, J. Xu, M. Cao, H. Li, and J. Ai, gOptical implementation
method of full-permutation non-blocking double Omega optical interconnection
network in optical computing,h Chinese
Journal of Lasers, Vol. 21, No. 3, pp. 220-224 (1994). (In Chinese).
136. J. Ai, M. Cao, Z. Li, H. Li, and F. Luo, gInterconnection matrix
of the Banyan network and its simulation study,h Acta Optica Sinica, Vol. 14, No. 5, pp. 513-517 (1994). (In
Chinese).
137. J. Ai, M. Cao, Z. Li, H. Li, and F. Luo, gTopological equivalence
variety of optical crossover networks with SW Banyan (F=S=2) networks,h Chinese Journal of Lasers, Vol. 21, No.
2, pp. 131-135 (1994). (In Chinese).
138. #H. Li, M. Cao, F. Luo, J. Xu, and Z. Li, gImplement of the
optical Banyan nonblocking four ports switching network,h Acta Optica Sinica, Vol. 14, No. 4, pp. 416-420 (1994). (In
Chinese).
139. F. Luo, M. Cao, H. Li, Y. Li, L. Huang, J. Ai, J. Xu, and Z. Li,
gDammann grating beam splitter with 65~65 spot arrays,h High Technology Letters, Vol. 7, No. 6, pp. 1-4 (1994). (In
Chinese).
140. F. Luo, M. Cao, H. Li, Y. Li, J. Xu, and Z. Li, gFabrication and
research of large array two-dimensional Dammann grating,h Semiconductor Optoelectronics, Vol. 15, No. 1, pp. 55-58 (1994).
(In Chinese).
141. #H. Li, M. Cao, F. Luo, J. Ai, and J. Xu, gParallel processing for
polynomial evaluation with a novel optical interconnection: the inverse perfect
shuffle,h Optics Commun., Vol. 103, No. 5-6, pp. 350-354 (1993).
142. Y. Liu, X. Nan, T. Cheng, and H. Li, gAn analysis of high power
active-mode-locked Q-switched YAG laser,h Laser
Technique, Vol. 17, No. 1, pp. 11-15 (1993). (In Chinese).
143. #H. Li, M. Cao, F. Luo, J. Ai, and J. Xu, gOptical implementation
of inverse perfect shuffle,h The High
Technology Letters, Vol. 6, No. 8, pp. 8-11 (1993). (In Chinese).
144. #H. Li, M. Cao, F. Luo, and Y. Li, gThe experimental study on an
InGaAsP/InP active semiconductor bistable amplifier,h Chinese Journal of Quantum Electronics, Vol. 10, No. 4, pp. 325-327
(1993). (In Chinese).
145. J. Ai,
M. Cao, Z. Li, H. Li, F. Luo, and J. Xu, gOptical rearrangeable crossover-reverse
crossover networks and their multiple sets of logical names topologically
equivalent with the Benes network,h Miniature
Computer System, Vol. 14, No. 12, pp. 8-15 (1993). (In Chinese).
146. #H. Li, M. Cao, F. Luo, J. Ai, and J. Xu, gThe research of Titanium-doped
sapphire laser pumped by Ar+3 Laser,h Applied Laser, Vol. 13, No. 6, pp. 262-263 (1993). (In Chinese).
147. #H. Li, S. Dong, and X. Lan, gThe research of high power
Q-switched and mode-locked CW Nd:YAG laser,h Applied Laser, Vol. 13, No. 3, pp. 139-141 (1993). (In Chinese).
148. #H. Li, X. Lan, S. Dong, and Y. Liu, gThe optimum design of
thermal-insensitive resonator in active mode-locked Nd:YAG laser,h Laser & Infrared, Vol. 23, No. 3,
pp. 31-34 (1993). (In Chinese).
149. M. Cao, F. Luo, H. Li, J. Ai, and J. Xu, gAn optical Omega network
with optical exchange-switch of four functions for digital switch network,h Acta Optica Sinica, Vol. 13, No. 12, pp.
1105-1109 (1993). (In Chinese).
150. M. Cao, F. Luo, H. Li, and S. Wang, gOptical
perfect-shuffle-exchange interconnection network using a liquid-crystal spatial
light switch,h Appl. Optics, Vol. 31,
No. 32, pp. 6817-6819 (1992).
151. X. Lan, H. Li, Y. Liu, and S. Dong, gStudy of simultaneous
mode-locked and Q-switching Nd:YAG laserh Laser
& Infrared, Vol. 22, No. 3, pp. 41-43 (1992). (In Chinese).
152. X. Liu, M. Cao, H. Li, and F. Luo, gThe research of binary
symbolic substitution adding rules in experiments,h Applied Laser, Vol. 12, No. 2, pp. 51-53 (1992). (In Chinese).
153. M. Cao, H. Li, F. Luo, and L. Lian, gOptical implement of perfect
shuffle/ exchange Omega interconnection network,h Acta Optica Sinica, Vol. 12, No. 12, pp. 1129-1134 (1992). (In
Chinese).
154. M. Cao, H. Li, X. Liu, S. Chen, L. You, and Y. Yang, gOptical
hardware for the perfect shuffle interconnection,h Optical Computing and Processing, Vol. 1, No. 1, pp. 23-27(1991).
155. M. Cao, Y. Li, X. Liu, H. Li, and S. Chen, gExperimental study of
optical parallel cache memory arrays,h Acta
Optica Sinica, Vol. 11, No. 9, pp. 790-793 (1991). (In Chinese).